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Preface

This volume presents the proceedings of the 2nd International Conference on
Mathematical Research for Blockchain Economy (MARBLE 2020), originally
scheduled to be held in Vilamoura, Portugal, from June 8 to 10, 2020. The advent
of COVID-19 pandemic has necessitated, in common with many other conferences,
a postponement to a later date which will be fixed once the evolution of the pan-
demic around the globe becomes clearer and allows for safe travel.

Thankfully, the pandemic has not prevented us from being able to put together
an exciting programme of research papers, keynote talks and a tutorial, in line with
MARBLE’s goal to provide a high-profile, cutting-edge platform for mathemati-
cians, computer scientists and economists to present the latest advances and
innovations related to the quantitative and economic aspects of blockchain tech-
nology. In this context, the Technical Programme Committee has accepted
10 research papers for publication and presentation on themes including incentives,
game theory, the analysis of portfolios containing cryptoassets, carbon trading and
quantum computing. The technical programme also features keynotes by the fol-
lowing distinguished speakers: Garrick Hileman (Blockchain.com), Dawn Manley
(Splunk), Silvio Micali (Algorand), Annika Monari (Aventus) and Alan Vey
(Aventus), as well as a tutorial on Decentralised Finance presented by Lewis
Gudgeon and Dominik Harz (Imperial College London).

We thank all authors who submitted their innovative work to MARBLE 2020. In
addition, we thank all members of the Technical Programme Committee and other
reviewers, everyone who submitted a paper for consideration, the General Chairs,
Profs. Yike Guo and Panos Pardalos, the Organisation Chair, Jas Gill, the Web
Chair, Kai Sun, the Publication Chair, Ilias Kotsireas, the Finance Chair, Diana
OMalley, the Publicity Chair, Sam Werner, and other members of the Centre for
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Cryptocurrency Research and Engineering who have contributed in many different
ways to the organisation effort, particularly Katerina Koutsouri. Finally, we are
grateful to our primary sponsor, the Brevan Howard Centre for Financial Analysis,
for their generous and ongoing support.

Vilamoura, Portugal Panos Pardalos
Ilias Kotsireas

Yike Guo
May 2020

William Knottenbelt
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Smart Contract Derivatives

Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros

Abstract The abilities of smart contracts today are confined to reading from their
own state. It is useful for a smart contract to be able to react to events and read the state
of other smart contracts. In this paper, we devise a mechanism by which a derivative
smart contract can read data, observe the state evolution, and react to events that take
place in one or more underlying smart contracts of its choice. Our mechanism works
even if the underlying smart contract is not designed to operate with the derivative
smart contract. Like in traditional finance, derivatives derive their value (and more
generally state) through potentially complex dependencies. We show how derivative
smart contracts can be deployed in practice on the Ethereum blockchain without
any forks or additional assumptions. We leverage any NIPoPoWs mechanism (such
as FlyClient or superblocks) to obtain succinct proofs for arbitrary events, making
proving them inexpensive for users. The latter construction is of particular interest, as
it forms the first introspective SPV client: an SPV client for Ethereum in Ethereum.
Last, we describe applications of smart contract derivatives which were not possible
prior to our work, in particular the ability to create decentralized insurance smart
contracts which insure an underlying on-chain security such as an ICO, as well as
futures and options.
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1 Introduction

Smart contracts [4, 16] on blockchain [11] platforms have limited capabilities even
when developed in Turing Complete languages such as Solidity. They are executed in
their own isolated environment, with full access to their own state, but limited access
to what is happening in the rest of the blockchain system. This inherently limits them
to performing isolated tasks, unless they interoperate with smart contracts designed
explicitly to work together with them.

In this work, we put forth a mechanism which allows so-called derivative smart
contracts to read the (potentially private) state of other, so-called underlying, smart
contracts, inspect any events they have fired and when, and more generally react
arbitrarily to any changes in the execution of other contracts. Notably, unlike any
previous mechanism, the underlying contract may not be designed (or willing) to
work with the derivative contract and hence our mechanism allows it to remain
agnostic to the interaction. Like financial derivatives, smart contract derivatives can
derive their value from the performance of, potentiallymultiple, underlying contracts.
The dependence between the contracts can be arbitrary.

We develop our solution in the form of a Solidity contract which can be used as
an oracle to create a derivative contract. We give three options for the instantiation
of the oracle contract. The first is based on a special Solidity feature and is the
cheapest to implement and use. The second is based on the BTCRelay [5] design
and requires helpful users to submit every block to this oracle contract. Finally the
third draws from the design in [8] and harnesses the power of Non-Interactive Proofs
of Proof-of-Work (NIPoPoWs) [7] for efficiency. The oracle smart contract may be
of independent interest, as it functions as an Ethereum SPV client running within
Ethereum itself and is the first such introspective SPV client of its kind.
Previous work. Granting smart contracts access to data external to their blockchain
environment has been studied in the context of oracles in which additional trust
assumptions aremade by the introduction of a trusted third party or committee [17] or
in the formof an oracle [18]. The generic transfer of information between blockchains
without the introduction of additional assumptions has been studied in the context
of sidechains [5, 8, 9, 12].
Contributions. Our contributions are summarized as follows:

1. We posit the problem of smart contract derivatives and put forth a construction
solving it without additional assumptions.

2. We propose three instantiations of our oracle; the first relying on features of
Solidity, the second inspired from the BTCRelay design and the third utilizing
NIPoPoWs.

3. We introduce the first introspective SPV client, a client for a blockchain system
running within that same blockchain system.

4. We discuss how our scheme can be used to instantiate some standard financial
derivatives: insurance, futures and options.
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2 Introspective SPV

Notation. We use x
?−→ a to denote the Merkle Tree [10] inclusion proof for tree root

a and element x . We use x
?−→ a[k] to denote the Merkle-Patricia Trie proof for the

assignment of key k to x in the MPT rooted at a. The verification result of a concrete
proof π is denoted (· π−→ ·) ∈ {true, false}.

For our construction, we define an oracle smart contract that can answer queries
regarding other smart contracts. Notably, the oracle contract is decentralized, i.e., it
does not make additional trust assumptions and so does not require a trusted third
party or committee. The oracle contract can answer the following queries about
arbitrary underlying contracts:

1. Retrieve the value of a private state variable of the underlying contract at any
point in the past.

2. Recall whether a particular event was fired by the underlying contract at any point
and retrieve the values of the event parameters.

3. Report on any past calls made to the underlying contract’s methods, whether these
were done by other contracts or by normal accounts, including the values given
to the parameters and money paid during the call.

Solidity already has some provisions for smart contract interoperability. For exam-
ple, a token contract usually follows the ERC-20 interface [15], which allows any
other contract to inspect its state and perform actions on it.

Even the most helpful smart contracts currently deployed however would come
with limitations. Specifically, reading incoming and outgoing transactions and events
emitted is currently impossible. While we could manage to partially work around
those limitationswith a smart contract framework for helpful contracts that records all
relevant transactions and events and makes them easily accessible, it is important to
remember that smart contracts are immutable and cannot be changed once deployed.
Thus, this solution would not work for existing smart contracts that we may be
interested in.

Additionally, this solution comes with extra storage requirements. Storage on
Ethereum costs disproportionately more that any other operation, and this cost would
have to be paid by the unlucky downstream users of the smart contract. Naturally
this presents the need for a solution that does not incur such costs on the downstream
users, which we are going to present shortly.
Private variable lookup. Assume a legacy smart contract has a variable of interest
that happens to be private. This means that with regular Solidity methods this vari-
able cannot be accessed. We show how this can be worked around with the help of
an untrusted third party who provides some proof. Provided one knows an actual
block hash b on the best chain, one only has to check two MPT proofs to ensure

what the value of the private variable px is, namely px
?−→ storageRoot[loc(px)]

and (_, _, storageRoot, _)
?−→ b.stateRoot[addr ] where loc(px) refers to the per-

sistent storage location of the variable px and addr refers to the smart contract
address.
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Detecting transactions. Recall that Ethereum stores an MPT root of all transac-

tions in its header. Thus the MPT proof t x
?−→ b.transactionsRoot[H(t x)] suffices

as proof that t x ∈ b. These proofs are already used in practice to prevent front-
running [1].

The above operations can be performed as long as our smart contract can verify
that a block header b is part of the current chain. We propose several mechanisms of
doing so.
BLOCKHASH opcode. Ethereum offers the BLOCKHASH opcode that allows a smart
contract to obtain previous block hashes. This functionality makes ensuring that a
provided block b is in the best chain trivial: the contract extracts b.height, invokes
BLOCKHASH for that height number and compares H(b) with the result of the
BLOCKHASH invocation. If those match, the block is valid. Unfortunately this func-
tionality is limited to the past 256 blocks [16]. There is a proposal to remove this arti-
ficial limit which is expected to be implemented in a future hard fork of Ethereum [3].
For Ethereum, this is the ideal solution to the block verification problem, resulting
in the least possible costs for proving events.
BTCRelay-style SPV. BTCRelay [5] rose to prominence in 2016 as a way to pro-
vide Bitcoin SPV client capabilities to any Ethereum smart contract. Every block is
submitted to the contract by helpful but untrusted participants and a header-chain is
formed and confirmed. A convenient mapping is kept so that it can be decided if any
block is in the current best header-chain. BTCRelay also offers incentives for sub-
mitters of blocks, where the submitters get rewarded whenever the blocks they have
posted are used to prove some event. This scheme can be used for block verification
of the Ethereum chain on Ethereum — an “ETCRelay”.
NIPoPoWs. NIPoPoWs [2, 7] are succinct strings that prove statements about some
chain. Their succinctness makes them perfect candidates to use as proofs for block
inclusion on an Ethereum smart contract. Details on their use for this scenario are
presented in [8].Note that this use comeswith a host of incentives via collateralization
that should be implemented for use in our Introspective SPV client.
Implementation. We summarize all these functionalities in the complete Introspec-
tive SPV contract shown in Algorithm 1. This is, to our knowledge, the first contract
that is an SPV client for its host chain.

We remark that using any storage is not necessary and it is only used for illustrative
purposes. All functions can bemade to operate based on only arguments they receive,
without compromising their security.
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Algorithm 1 Introspective SPV contract for Ethereum, on Ethereum.
1: contract introspective-spv
2: function submit-block(b,π)
3: if ¬verify(b,π) then
4: return ⊥
5: end if
6: valid-blocks∪= {b}
7: end function
8: � verify-* functions return false if b /∈ valid-blocks
9: function verify-tx(t x, b,π)

10: return t x
?−→ πb.transactionsRoot[H(t x)]

11: end function
12: function verify-storage(val, loc, addr, b,π)

13: return ∃σ : val ?−→ π[0]σ[loc] ∧ (_, _,σ, _)
?−→ π[1]b.stateRoot[addr ]

14: end function
15: function verify-event(evt, addr, b,π)

16: return evt.src = addr ∧ ∃i, rl : evt ∈ rl ∧ (_, _, rl , _)
?−→ πb.receiptsRoot[i]

17: end function
18: end contract

3 Concrete Instances

We now move to some notable applications that can be accomplished by contracts
which build on the Introspective SPV functionality.
Insurance. A quite useful application of a smart contract derivative is the ability
to provide insurance for an underlying smart contract. This is a contract between
an insurer and a policyholder account. The contract works as follows. Initially,
the insurer creates the insurance contract, depositing a large amount of money to
it to be used as liabilities in case of claims. Subsequently, after checking that the
deposited amount secured against liabilities is sufficient, the future policyholder
account deposits the premium as a payment to the insurance contract, which signs
them up for the insurance. The premium can also be paid in installments if desired.
Once the premium has been paid, the policy is activated for the particular policy-
holder.

The derivative smart contract insures against a covered loss event which pertains
to an underlying smart contract. Unlike traditional insurance contracts, assessing
whether a claim is valid or not is not left up to the insurer or courts of law, but is
determined by the smart contract in a predetermined and decentralized manner. As
such, there can be no disputes on whether a coverage claim is valid.

One such example constitutes insuring an underlying ICO smart contract [13]
against a specified loss condition. The condition describes what the policyholder
considers to be a failed outcome of the ICO. For instance, the policyholder can
specify that the ICO’s success requires that there are at least 5 whale investors,
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defined as investors each of which has deposited more than $1,000,000 in a single
transaction over the course of the ICO’s fundraising period.

Insurance claims in this example are made as follows. If the insured determines
that there has been a loss event (i.e., there have been fewer than 5 whale investors),
then at the end of the ICO’s fundraising period, they submit a claim. This claim
does not include any proof. The opening of a claim initiates a contestation period
during which the insurer can submit a counter-claim illustrating that the claim was
fraudulent. This counter-claim does include a proof, which consists of 5 transactions
made to the ICO smart contract each of which pertains to a different investor and is
valued more than $1,000,000. This counter-claim proof can be checked for validity
by using the means described previously. If there are no counter-claims within the
contestation period, then the claimant is compensated. In case the policyholder acts
adversarially, making a fraudulent claim, the insurer can always present this counter-
claim and avoid paying compensation. In case the insurer acts adversarially, electing
not to pay compensation when required to do so, the policyholder will make a claim
against which the adversarial insurer will not be able to provide a counter-claim.

It is noteworthy that the contract should be resistant to attacks where a malicious
policyholder continuously makes false claims that the honest insurer has to defend
against causing them monetary loss. To prevent such attacks, the smart contract may
request some collateral from the policyholder when claiming, that is taken from
them if they are making a false claim and returned to them when they are making a
truthful claim. Such incentive mechanisms have been the subject of extensive study
in previous work [14].
Options. Traditionally an option is a contract between a holder and awriter. It allows
the holder to either buy (call option) or sell (put option) an underlying asset to the
writer at a specified strike price and until a specified expiry date [6]. If the holder
elects to exercise the option, the writer is obligated to complete the trade. An option
can be traded on the open market like any other asset. Buying an option ensues that
the existing holder forfeits their contractual rights and transfers them to the buyer,
making them effectively the new holder.

Centralized exchanges have a plethora of ways of enforcing the legal obligations
of writers. Specifically, if a writer does not fulfill the valid request of a holder, their
account may be frozen, their funds may be seized and further action may be taken
against them through the traditional legal system.

To implement options in a decentralized manner we assume the existence of
a clearing house, which can be implemented as its own smart contract, that will
insure the holder against the event that the writer does not fulfill her contractual
obligations. A responsible options buyer only buys an option that comes with a
guaranteed insurance similar to the one outlined in the previous section. If the writer
fails to fulfill her contractual obligations, a claimwith the clearing house is started. A
successful claim would be of the form: “On some block that occurred after the start
of the option contract and before its expiry, I (the holder) requested to exercise my
option. By the block of expiry, no event was fired indicating that my writer acted to
fulfill my request for the requested price and amount”. After the contestation period,
the holder is refunded by the clearing house smart contract.
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Futures. Similar to an option, a future is a contract between two parties. The defining
difference from an option is that the holder is obligated to perform a specified action
(either buy or sell) on the underlying asset at the strike price and on the specified
expiry date [6]. For simplification the expiry date can be described as a block height
inside the smart contract. It is easy to see how this system can also be implemented
with the help of a clearing house, similarly to an option. Plainly, in case of fraud, the
policyholder could claim that “Between the start of the agreement and the expiry, no
Solidity event was fired indicating that the writer bought or sold from me the agreed
amount at the agreed price”. In case of a fraudulent policyholder, all the clearing
house has to do is provide proof that this event was fired in some block in the period
of interest.
On the availability of insurers. Exchanges implicitly offer insurance for their users
by keeping track of how much money they store with them and making sure they are
not over-exposed to risk. Banks implicitly offer insurance for their customers based
on their credit-worthiness. The same out-of-band criteria can apply for any institution
wishing to insure on-chain. An insurer can create an off-chain agreement with the
party who can cause a loss and claim, or rely on some on-chain collateral, potentially
denominated in multiple tokens/currencies, to be automatically compensated in case
of misbehavior.
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Bitcoin Crypto–Bounties for Quantum
Capable Adversaries

Dragos I. Ilie, Kostis Karantias, and William J. Knottenbelt

Abstract With the advances in quantum computing taking place over the last few
years, researchers have started considering the implications on cryptocurrencies. As
most digital signature schemes would be impacted, it is somewhat reassuring that
transition schemes to quantum resistant signatures are already being considered for
Bitcoin. In this work, we stress the danger of public key reuse, as it prevents users
from recovering their funds in the presence of a quantum enabled adversary despite
any transition scheme the developers decide to implement. We emphasize this threat
by quantifying the damage a functional quantum computer could inflict on Bitcoin
(and Bitcoin Cash) by breaking exposed public keys.

1 Introduction

The theory behind quantum computers (QC) was first introduced about 40 years
ago. Research in the space has produced outstanding results, that have the potential
to undermine the most popular cryptographic protocols in use today. One notable
theoretical result is Peter Shor’s quantum algorithm [25] which can be used to break
digital signature schemes such as RSA or ECDSA. The engineering advancements
needed to physically implement such a complex machine have only recently started
to appear, but a sudden improvement in the approach towards scaling might lead to
a powerful QC appearing virtually overnight.
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The Bitcoin community is also affected by these developments, as the mechanism
for ensuring ownership of funds relies on ECDSA. Bitcoin’s cryptography must be
updated; in fact there are plenty post-quantum cryptographic schemes to choose from
if one is willing to sacrifice speed and storage. Such a scheme will be implemented in
Bitcoin at some point and the majority of users will be able to safely lock their funds
with quantum resistant signatures. However, in the extreme scenario of a Quantum
Computer appearing without notice, not all users would be able to benefit from
this upgrade. Interestingly, the recommended practices in Bitcoin would offer some
level of quantum resistance that allows recovering funds safely, but unfortunately,
many users do not follow these. In this paper we analyse Bitcoin (BTC) and Bitcoin
Cash (BCH) for the amount of funds secured by exposed public keys; or, from the
perspective of a quantum research group, the “crypto–bounty” for engineering a
powerful quantum computer.

1.1 Contributions

This paper builds upon previous work of the authors [27] and brings the following
contributions to the research space:

1. In Sect. 4.1 we describe the setting in which a quantum enabled adversary would
operate if it were to start attacking the Bitcoin network considering developers
and users take immediate measures to protect their funds and recover the network.

2. In Sect. 4.3 we present two models of attackers: one that can run Shor’s algorithm
virtually instantly and a slower one that might be more realistic for the first
generations of attackers.

3. In Sect. 4.4 we describe attack vectors for maximizing the crypto–bounty, i.e. the
amount of funds that are impossible to recover by legitimate users in the presence
of the attacker.

4. In Sect. 5 we present a study of the evolution of the crypto–bounty in Bitcoin and
itsmost significant fork, BitcoinCash. Furthermore,we describe ourmethodology
for obtaining these results and discuss what can be deduced from them.

2 Related Work

Previous work [27] of some of the authors of this paper has looked into revealed
public keys to motivate the introduction of a protocol for transitioning to quantum
resistance. They have found that approximately 33% of Bitcoin is secured by public
keys that are exposed either trivially in an output, or in an input due to address reuse.
In this study, we would like to consolidate that data and perform a more in-depth
analysis looking not only at the current UTXO set, but also at the history of public
key exposure and its source.
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Other researchers have carried out a similar analysis [6], but their estimates rep-
resent a much lower bound than what we are providing and does not consider P2SH
and P2WSH type addresses which are very popular in recent years. Furthermore,
their study only looks at reused addresses, while we also inspect reused public keys
between different addresses.

We have also become aware of other similar studies created by members of the
cryptocurrency space, but we could not find descriptions of their methods or details
of the results. One such analysis was done by one of the developers of BlockSci [12],
who summarized his result that 5.8 million Bitcoins are secured by exposed public
keys in an online discussion [11].

3 Background

In this section we briefly cover the basic concepts necessary for understanding the
motivation behind the analysis we are conducting and themethods used to perform it.
We present some of the structures that are used in Bitcoin to secure and move funds
across the network and offer insight into the workings of Shor’s quantum algorithm.

3.1 Bitcoin Fundamentals

Bitcoin transactions are data structures that encode the transfer of ownership of funds
using inputs and outputs. Transactions are created, shared and stored by network
participants following a protocol which dictates their validity and ordering. Funds
reside in unspent transaction outputs (aka. UTXOs), each having an associated value
and a locking script. For usability, some standard types of locking scripts are encoded
in base 58 to produce addresses, which can easily be shared between users. To spend
funds, a transaction input references an output and includes an unlocking script,
which is used in combination with the locking script for validation. Ownership is
guaranteed by a combination of hash commitments and public key cryptography.
In general, each input contains a digital signature over the transaction spending the
output. The signature is verified against a public key that is encoded in the output
either in plaintext or inside a hash commitment which is revealed by the input.
Depending on the type of locking script in the output, the input consuming it needs
to provide unlocking data in various formats [4]. We can distinguish the following
standard script types:

1. Pay-To-Public-Key (P2PK) is the script type used for thefirstBitcoin transaction.
This is the most simplified form of locking and unlocking scripts: the public key
is written in plaintext in the locking script, and the digital signature appears in
the input, also in plaintext. Only the owner of the corresponding private key can
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create a signature that would be verified against the public key from the locking
script.

2. Pay-To-Multisig (P2MS) is a script pattern that allows users to lock funds to
multiple public keys but require signatures only from a subset of those. Similarly
to P2PK the public keys are all listed in plaintext in the locking script together
with a minimum threshold number of signatures that need to be provided in the
unlocking script. However, public keys are quite large and data on the blockchain
costs fees, so this outputs are not very popular.

3. Pay-To-Public-Key-Hash (P2PKH) is an improved version of P2PK. The lock-
ing script contains a 20 byte hash commitment to the public key and the input
contains both the public key and digital signature. This type of script was intro-
duced to minimise the size of the output as hashes are only 20 bytes compared to
public key which are 65 bytes uncompressed or 33 bytes compressed.

4. Pay-To-Script-Hash (P2SH) outputs are yet another improvement; instead of
specifying the locking script in the output, a 20 byte hash commitment to it is
stored instead. A valid input contains the unlocking script and the pre–image
of the hash commitment from the output. This type of output has the same size
as P2PKH outputs, but allows for more complex locking scripts to be encoded
without requiring the payer to incur the fees associated with the extra data. This
script is most commonly used to nest P2MS, P2WPKH, or P2WSH.

5. Pay-To-Witness-Public-Key-Hash (P2WPKH)was deployed in 2017 via a soft-
fork in order to address several issues such as signature malleability and through-
put limitations. Similarly to P2PKH the locking script contains a 20 byte hash of
the public key and the input holds the public key and signature. The difference
is that the input data is held in a segregated area called segwit which does not
contribute towards the hash of the transaction and size limit of a block.

6. Pay-To-Witness-Script-Hash (P2WSH) is a script type introduced together with
P2WPKH and represents the P2SH version of segwit. The output contains a
32 byte hash of the actual locking script, 12 bytes larger than the 20 byte hash
from P2SH. This increase is meant to improve security against possible collision
attacks as the work needed to find a collision in a 20 byte hash is no longer
infeasible. This script type usually nests P2MS.

Digital Signatures in Bitcoin are implemented using the Elliptic Curve Digital
Signature Algorithm (ECDSA); an implementation of the Digital Signature Standard
(DSS) based onElliptic CurveCryptography (ECC) [3]. ECC is an approach to public
key cryptography that relies on the mathematics of elliptic curves over finite fields.
To this end, the public key is a point on an elliptic curve,1 and the secret key is
the exponent at which a base point2 is raised in order to obtain the public key. As
in any other digital signature scheme, the private key is kept secret and used to
sign messages, while the public key is published and used to validate signatures.
ECC and therefore ECDSA rely on the assumption that it is intractable to solve

1Bitcoin uses parameters defined in secp256k1 [20] due to several mathematical properties which
allow computations to be optimized.
2See Footnote 1.
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the Elliptic Curve Discrete Logarithm Problem (ECDLP) [7], which would allow
deducing the private key from the public key, defeating the whole purpose of a digital
signature algorithm. Similarly to the more famous integer factorisation problem [8],
ECDLP has no known reasonably fast (e.g. polynomial–time) solution on a classical
computer [17].

3.2 Quantum Computing

Quantum Computing is experiencing an increase in interest in the last few years as
more giants of industry become interested in the possibilities promised by the theory
behind quantum algorithms, i.e. they are able to solve certain classes of mathematical
problems with drastically improved running time compared to classical algorithms.
Although it is outside the scope of this paper to explain themechanism throughwhich
quantum algorithms achieve quadratic or exponential speed-ups over their classical
counterparts, we would like to offer some intuition about why they are of interest for
ECC, and hence, Bitcoin. Usually, quantum computations encode many values on a
single register and then perform computations on it. However, measuring the register
would reduce the superposition to a single value, losing all information about the
other solutions. Thus, quantum algorithms are designed to manipulate the register in
order to extract knowledge about the hidden structure of the values on the register.

Shor’s Algorithm [25] is a quantum algorithm that, in generalized form, can solve
a class of problems known as the hidden subgroup problem over a finite Abelian
field [18]. In factmost public key cryptography in use today relies on the intractability
of this problem in certain groups. Indeed, the ECDLP can also be reduced to this
problem,meaning that such an algorithmwould be able to compute a private key from
a public key in relatively short time. The core of the algorithm is the application of
the Quantum Fourier Transform (QFT) circuit [15] which runs in polynomial–time.
Proos and Zalka have approximated that approximately 6n (where n is the security
parameter, 256 bits for Bitcoin) qubits would be needed to run the computation [19].

4 Context and Modelling

In this section, we assume the setting under which the quantum capable attacker
operates and explain what would constitute the crypto–bounty available to him, even
if the community learns of his existence and tries to switch to a quantum resistant
signature scheme. As described in previous work in [27, 28], the main attack vec-
tors available to quantum capable adversaries stem from exposed public keys. Such
adversaries can use Shor’s quantum algorithm with a revealed public key as input,
and compute the associated private key, gaining complete control over the original
owner’s funds.
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Live Transaction Hijacking is a type of attack similar to double spending [13, 14,
22, 26]. The attacker can create conflicting transactions that spend the same UTXOs
as honest transactions but send the funds to addresses under his control. A quantum
enabled adversary can perform this attack only if he is able to compute the private key
associated to a public key revealed in the input of a transaction while the transaction
is still in the miners’ mempool. In the presence of a malicious actor capable of this
attack, users would not be able to create any new transactions as this would reveal
their public keys and their transactions would be susceptible to hijacking.

4.1 Transitioning to Quantum Resistance

As the community learns of the presence of a quantum attacker approaching the abil-
ity to perform live transaction hijacking, Bitcoin users would have to stop all activity
and deploy a scheme for transitioning to quantum resistance under the assumption
that they are in the presence of an adversary capable of live hijacking. Such a protocol
would have to rely on some construction that does not expose the ECDSA public key
immediately (or ever), but allows for the linking of transactions to it. Some schemes
that achieve this feat, are described in [1, 27, 29], but the community can settle on any
viable alternative. However, we note that only UTXOs secured by not-yet-revealed
public keys could be safely transitioned to quantum resistance as public keys that
are exposed at the time of deploying the transition protocol would still be cracked
by the attacker who would be essentially indistinguishable from the actual owner.
Therefore, any UTXOs secured by revealed public keys would constitute a bounty
for the quantum capable attacker as the legitimate owners would not be able to move
the funds to quantum resistant outputs under their control.

4.2 Attack Vectors Considered

Given this setting, quantum enabled adversaries could still consume any outputs
associated to public keys revealed before the deployment of the transition scheme.
Any attempt from the legitimate owner to transition the funds can be hijacked using
the private key computed using Shor’s quantum algorithm. Below we enumerate
some types of UTXOs attackers can target by obtaining exposed public keys. We
only focus on these scenarios as the information is publicly accessible and allows
for the retrospective analysis of balances of revealed public keys at a certain block
height. Other types of public key unveiling are presented in [27].

1. Outputs of type P2PK and P2MS display the public key in plaintext in the output
of the transaction.

2. Outputs of type P2PKH, P2SH, P2WPKH, or P2WSHwhere the necessary public
key has been used as part of P2PK or P2MS, thus exposing it.
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3. Outputs of type P2PKH, P2SH, P2WPKH, or P2WSH where the locking script
is being used to receive multiple payments which are not consumed at once. This
sort of locking script reuse renders the unspent outputs vulnerable as the public
key is exposed in the unlocking script of an input. Such behaviour is discouraged
due to a number of privacy attacks [5, 9, 16, 24, 30], but many wallet providers
and even large exchanges ignore these practices.

4.3 Adversary Model

Firstly, we assume the quantum capable attacker can only affect the blockchain using
Shor’s algorithm. As other studies [2, 23, 28] have discussed, quantum computers
could be used to run Grover’s quantum algorithm [10] in order to obtain a quadratic
speed-up in mining. It is not clear if this would lead to a real advantage as current
ASICminers are highly optimized and supposedlymuch cheaper to run than quantum
computers. Therefore, our aim is to analyse only the stealing of funds by using Shor’s
algorithm.

The assumption we are working with is that once a quantum adversary starts act-
ingmaliciously, the Bitcoin community detects this behaviour and clients are quickly
updated to use a scheme for transitioning to quantum resistance, thus invalidating
simple ECDSA signatures.3 At this point, the attacker can only target the UTXOs
secured by already revealed public keys. As legitimate users learn of this develop-
ment, they race to spend the vulnerableUTXOs in order to transition them to quantum
resistant outputs. At the same time, quantum–capable attackers try to spend the same
UTXOs using the private keys they managed to break until this point. However, if
the attacker cannot run Shor’s algorithm fast enough, some users will manage to
transition their funds without the attacker having time to break their public key even
though it was revealed.

Therefore, in order to maximize the value of the crypto–bounty, an adversary
would have to first collect all the revealed public keys, break them, and only then
start the attack. This strategy allows him to collect at least all the UTXOs secured by
revealed public keys at the time the transitioning protocol is deployed. Although it
is impossible to estimate the clock speeds of quantum computers as the technology
behind them is still in early stages and the most efficient approach has not been deter-
mined yet, we will differentiate between two purely hypothetical types of quantum
capable attackers.

Instant attacker is able to deduce private keys from public keys considerably faster
than a transaction sits in a miner’s memory pool before it is included in a block.

3We use the word “simple” as any protocol for transitioning to quantum resistance that aims to be
deployed via a soft fork, needs to verify ECDSA signatures for compatibility with non-upgraded
clients. However, it must also verify some other form of quantum resistant cryptography such that
attackers cannot exploit the scheme.
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Our analysis indicates that the median input count per Bitcoin block in the past year
is 5350. Thus, an instant quantum attacker should be able to break approximately
5350 public keys every 10min,4 meaning he would need to run Shor’s algorithm in
approximately 100 milliseconds. This speed suffices because the attacker can offer
higher fees than honest users, thus incentivizing miners to only select his transac-
tions. Such an attacker could start actingmaliciously immediately after he develops a
quantum computer as the computation speed he benefits from allows him to scan the
mempool and hijack any attempt at transitioning funds to a quantum resistant output.

Slow attacker represents a more realistic although still hypothetical adversary that is
able to deduce private keys from revealed public keys but needs amuch largerwindow
of time in order to break all the public keys that are revealed. The attacker builds
a database of computed private keys, but at the same time, some of these become
unusable as users move their funds before the attacker has finished collecting a
sufficient amount. There are heuristics the attacker could employ in order tominimize
the amount of private keys he attempts to break and maximize profit. For instance,
he could analyse patterns of public key usage and target those that are inactive for
long periods of time, under the assumption that the original owners have lost the
private keys, and therefore, control of the funds. Another effective strategy could be
identifying public keys which are used mainly for receiving money, e.g. exchanges
use addresses where users deposit their funds but rarely withdraw. However, for the
purposes of this study, we assume that at any given moment the attacker has broken
only the public keys revealed at least a year in the past.

4.4 Aggregating Vulnerable Outputs

Regardless of the speed of a quantum adversary, in order to identify all the vulnerable
UTXOs, an attacker needs to create and maintain two indexes: one from potential
locking scripts to revealed public keys and one from public keys to the associated
private keys. This allows him to prioritize the breaking of public keys according to
the value secured by them. For some output types such as P2PK and P2MS this task
does not pose difficulty as the public key is revealed directly in the locking script.
In general, an attacker could listen for all transactions and group outputs by their
locking script even though the public key that unlocks them is not visible yet. Once
at least one of these outputs is spent, the public key used in the unlocking script
can be linked to the UTXOs that have not been consumed. However, these strategies
only consider reuse of the same locking script in multiple outputs but not the reuse
of public keys inside different types of locking scripts. To this end, we can define the
concept of equivalent locking scripts:

410min is an estimate for the average time a transaction sits in the mempool before being included
in a block.
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Equivalent locking scripts require the same public key to unlock them. It is possible
to detect reuse of public keys across the standard types of outputs presented in Sect. 3.
In surplus, to the locking scripts equivalent to a public key, an attacker could also
generate equivalent locking scripts for P2MS, i.e. P2MS nested in one of P2SH or
P2WSH. We describe the operations to generate each type of equivalent standard
locking script below:

1. Any public key, pk, can be hashed using HASH160(pk)5 to obtain the 20 byte
hash commitment used inside P2PKH and P2WPKH locking scripts.

2. Any locking script, S, of type: P2PK, P2MS, P2PKH, P2WPKH, or P2WSH can
be hashed using HASH160(S) to obtain the 20 byte hash commitment used
inside P2SH.

3. Any locking script, S, of type: P2PK, P2MScan be hashed usingSHA-256(S) to
obtain the 32 byte hash commitment used inside P2WSH. Notice that
SHA-256(S) was already computed as part of calculating HASH160.6

4. Any combination of up to 15 public keys can be used to generate P2MS locking
scripts. Although there is no direct benefit in obtaining P2MS locking scripts
as they display the public keys in the output, there might be P2SH or P2WSH
outputs which include a hash commitment to a P2MS otherwise not revealed.
These can be generated by hashing every possible P2MS obtained from the set
of exposed public keys using HASH160 for P2SH or SHA-256 for P2WSH. We
note that generating all these scripts takes polynomial time (with exponent 15) in
the number of unique public keys; in our analysis, we have found approximately
700 million unique public keys. Even if we only try to build combinations of just
3 public keys, it would still take 100 thousand years for the fastest miner7 on the
market today to compute that many hashes. Given the amount of computation
required to identify such outputs and the low value of P2SH outputs in general,
we do not consider this attack any further.

To use the above data, an adversary needs to keep an index from each possible locking
script to the private key that can unlock it. For every public key, the 6 most com-
mon locking scripts (i.e. P2PK, P2PKH,8 P2SH-P2PK, P2SH–P2WPKH, P2WSH–
P2PK, P2SH–P2WSH) can be generated and included in the index. Furthermore, any
P2MS locking script can be used to generate locking scripts of type P2SH-P2MS
and P2WSH-P2MS. With 700 million different public keys and 55 million P2MS
locking scripts, the attacker’s index would hold approximately 4.3 billion entries. If
needed, access to such an index can be optimized using a bloom filter.

5HASH160(x) = RIPEMD-160(SHA-256(x))[21].
6See Footnote 5.
7Currently, the fastest ASIC miner we are aware of is the Ebit E10 capable of computing 18Th/s.
8Note that P2PKH contains the same hash commitment as P2WPKH, therefore it suffices to store
only one of them.
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5 Crypto–Bounty Analysis

In this section we describe our approach to estimating the value of cryptocurrency, on
the Bitcoin and Bitcoin Cash blockchains, vulnerable to an instant and slow attacker.
We have analysed the current state of the Bitcoin and Bitcoin Cash networks, but also
the historic evolution of the crypto–bounty, in order to deduce and compare patterns
of public key reuse in the communities.

5.1 Methodology

To complete this analysis we have used a combination of open source tools and
libraries made available by the Blockchain community. Most notably, BlockSci [12]
allowed us to obtain metrics for the number of outputs vulnerable and their value.
BlockSci uses a customparser to generate indexeswhich are not found in usual imple-
mentations of full nodes, such as: index of transactions by address, index of inputs by
referenced output, index of addresses by public key, etc. These constructions enable
us to analyse various metrics throughout the history of different Bitcoin-based cryp-
tocurrencies.

For the historic analysis we would like to estimate the amount of cryptocurrency
that is locked in vulnerable UTXOs at a given point in time, or in domain specific
terms: at a given blockchain height, h. Naturally, we only count the outputs which
were unspent at that time and associated to a public key which has already been
revealed. Notice that most of the outputs that were part of the UTXO set at height
h, are actually spent at a later block height h′ > h, directly revealing the public
key associated to them. Therefore, we need to build an index of unique public keys
by height of first reveal. We also use an index built by the BlockSci parser to link
each output to the input consuming it. Therefore, we can formulate our strategy
for computing the evolution of the crypto–bounty available to a quantum enabled
adversary.

For each output in every transaction in every block B, compute the height at
which the necessary public key is broken. For an instant attacker, the height at which
a public key is revealed is also the height at which it is broken. However, for a slow
attacker wemust consider a delay of one year from the time the public key is revealed.
To generalise, we will define ShorDelay as the time delay it takes to run Shor’s
Algorithm for a certain quantum attacker. Depending on the type of output, we can
obtain the height Hreveal , at which the attacker could have started running Shor’s
algorithm on the public key associated to the output, in the following ways:

1. P2PK → We query the index of public keys to obtain the first height at which
the public key in the output was revealed, Hreveal .

2. P2MS → For this type of output a minimum threshold, m, of public keys need to
be broken in order to obtain control over it. We can consider Hreveal is the height
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at whichm of the public keys were revealed. We lookup each of the public keys in
the index and sort the heights returned. Hreveal is the value on positionm (indexed
from 1) in the list.

3. Other spent outputs→Weperform a lookup in the index of inputs by referenced
outputs to obtain the unlocking script associated to this output. Consequently, we
find the public key needed and lookup the height at which it was revealed, Hreveal ,
using the index of public keys. For nested P2MS unlocking scripts (i.e. P2SH-
P2MS, P2WSH-P2MS) therewill bemultiple public keys. In that casewe perform
the same operations as for P2MS to compute Hreveal .

4. Other unspent outputs → The remaining outputs are UTXOs which are not
P2PK or P2MS. For these outputs we rely on the BlockSci index of equivalent
addresses; this is similar to the index of equivalent locking scripts we described in
Sect. 4. Thus, for every UTXOwith a locking script which does not directly reveal
the public key, we query this index for the equivalent P2PK address. From this we
extract the public key and lookup the height at which it was first revealed, Hreveal .
Due to space and time complexity, BlockSci does not generate every possible
P2SH script when implementing the concept of equivalent addresses. Therefore,
some P2SH UTXOs will not be identified as equivalent to public keys that are
revealed.

Having obtained the height at which the public key of each output was revealed,
we can define the height at which an attacker is capable of breaking it as the
minimum between Hreveal incremented with the delay of running Shor’s algo-
rithm and the height at which the output appeared: B.height . Therefore, Hbroken =
min(B.height,ShorDelay + Hreveal). If Hbroken is smaller than the height at
which the output is spent Hspent , the adversary would have had a window of attack:
(Hbroken, Hspent ), during which he could have stolen the value of this output. Finally,
we aggregate the values of overlapping windows to produce the results that follow.

5.2 Results and Discussion

All the data presented in our work was collected at blockchain height 605650 for
both Bitcoin (BTC) and Bitcoin Cash (BCH). At this block height, there are 18M
coins in circulation on each chain.

The current crypto-bounty is presented inTable 1.Wenotice thatBCHusers behave
more carelessly with their keys. While 31.77% of BTCs are locked in 26.66M vul-
nerable UTXOs, in BCH 39.42% of the coins are locked in 16.25M UTXOs. Appar-
ently, BCH users lock more of their funds in less outputs than those of Bitcoin. We
believe this is a consequence of the segwit fork, as BTC blocks do not include the
signature data anymore, thus allowing for more outputs and inputs than BCH blocks.
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Table 1 The current crypto–bounty in Bitcoin and Bitcoin Cash, from the perspective of an instant
and slow attacker

P2PK P2PKH P2MS P2SH P2WPKH P2WSH Total % of
Supply

Instant BTC 1.75M 1.92M 41.43 2.03M 22.4K 8.77K 5.74M 31.89%

BCH 1.76M 4.33M 30.6 4.33M N/A N/A 7.12M 39.55%

Slow BTC 1.75M 1.46M 41.34 0.76M 2.9K 3.34K 3.99M 22.16%

BCH 1.76M 2.28M 30.59 0.21M N/A N/A 4.25M 23.61%

The evolution of the crypto–bounty for an instant and slow attacker can be seen in
Fig. 1 for BTC and Fig. 2 for BCH.We have left out the plots for P2MS and segwit
type outputs as their values are insignificant in comparison to the other outputs and
would just clutter the image. We did, however, tally their contribution towards the
overall crypto–bounty (i.e. the Sum plot).

In Fig. 1, notice how the plots for P2PK converge around year 2013 and then
remain approximately constant until the present, indicating that there is almost no
activity involving P2PK outputs after 2013. This is expected as they are considered
legacy locking scripts, but the fact that these outputs have not been moved for years,
could signify that their owners have lost control of the private keys. In consequence,
no scheme can transition them to quantum resistance and we can consider the 1.75M

Fig. 1 Evolution of the crypyo-bounty for an instant (opaque) and slow (transparent) attacker,
segregated by type of output
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Fig. 2 Comparison between vulnerable coins in BTC (solid) and BCH (dotted)

BTCs (and 1.76M BCHs) locked in these outputs a guaranteed prize for the first
quantum computer powerful enough to break a 256 bits ECDSA public key.

Also in Fig. 1, we draw attention to the parallelism, or lack thereof, between two
plots for the same type of output. We can use this to describe the frequency and
exposure of address reuse. For instance, the P2PKH plots for the slow and instant
quantum attacker show almost no correlation from 2013 to 2015. While the reuse
of these addresses was considerable as indicated by the instant attacker’s plot, the
exposure of the outputs was mostly less than a year, as the slow attacker’s plot does
not follow the same trend.
Comparing BTCwith BCH we can ignore the common history up to block 478558
at which BCH forked fromBTC. To this end, the plots in Fig. 2 start at block 460000,
such that the fork point is clearly visible.

Analysing Fig. 2, we observe that although the total amount of coins vulnerable is
relatively the same across BTC and BCH, there is a clear difference in preference for
output types in the two communities and this is creating an upward trend for address
reuse inBCH.WhileBTCusersmove funds away fromP2PKH toP2SHandP2WSH,
which are harder to identify, the BCH community is increasingly reusing P2PKH
addresses, which require only one hash computation to be linked to the public key.

A similar conclusion can be drawn from the charts in Figs. 3 and 4, where we
plot the number of outputs that are vulnerable. Observe how the graphs for the
slow attacker differ across the two Figures for P2PKH and P2SH. While for BTC
(Fig. 3) the plot is fairly distant from that of the instant attacker, in BCH (Fig. 4)
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Fig. 3 Historic size of the vulnerable UTXO set from the perspectives of the instant (opaque) and
slow (transparent) attackers in BTC

Fig. 4 Historic size of the vulnerable UTXO set from the perspectives of the instant (opaque) and
slow (transparent) attackers in BCH
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they approach, almost converging. This means that slow attackers in Bitcoin cannot
make use of as many public keys as slow attackers in BCH. So even though there are
more outputs that reuse addresses in BTC, the exposure of the public keys securing
them is generally shorter. Furthermore, the value locked in these outputs is steadily
decreasing as we can see from Fig. 2. At the same time, BCH users are reducing
the number of outputs, but as indicated by the converging plots for the same type of
output from Fig. 4, most of them are associated to public keys revealed long ago,
hence the ascending trend of the crypto–bounty for BCH observed in Fig. 2.

6 Conclusion

In this paper, we have formulated the context in which a quantum enabled adversary
would have to operate if it were to start attacking theBitcoin network.We assumed the
community would swiftly transition to a quantum resistant signature scheme through
the use of a transitioning scheme that allows users to link transactions to their public
keys without revealing them in the open. However, it is up to the individual user,
to operate in a responsible manner that makes transitioning his funds even possible.
Therefore, we emphasize the importance of locking funds in UTXOs associated to
public keys which have not been revealed publicly, as otherwise, a quantum enabled
adversarywould be able to forge any action on behalf of the legitimate user, including
transitioning the user’s funds to addresses under his control.

We propose two models for the quantum adversary: one that can run Shor’s algo-
rithm virtually instantly and a slower one that might be more realistic for the first
generations of quantum attackers. Consequently, we outline strategies available to
each of them for maximizing profit through denying legitimate transactions to go
through by overriding them with higher fee transactions spending the same UTXOs.

Finally, we demonstrate the methodology used to analyse the current and historic
state of the vulnerable UTXO set as seen from the perspective of the two types of
quantum enabled adversaries. We present the results gathered and analyse patterns
of address reuse, noting that a larger percentage of the total supply is stored in con-
siderably fewer outputs in Bitcoin Cash compared to Bitcoin. Furthermore, Bitcoin
Cash users reuse addresses for longer periods of time, while in Bitcoin the exposure
of public keys with positive balances is somewhat limited. We note that currently
there are 1.75M BTCs and 1.76M BCHs which reside in a small number of outputs
that have been mostly untouched since 2013, suggesting these may be zombie coins
which cannot be recovered by classical means as the private keys have been lost. On
the other hand, these coins could be considered a guaranteed reward for the entity that
implements the first large scale quantum computer, whenever that would happen.
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An Econophysical Analysis of the
Blockchain Ecosystem

Philip Nadler, Rossella Arcucci, and Yike Guo

Abstract We propose a novel modelling approach for the cryptocurrency ecosys-
tem. We model on-chain and off-chain interactions as econophysical systems and
employ methods from physical sciences to conduct interpretation of latent parame-
ters describing the cryptocurrency ecosystem as well as to generate predictions. We
work with an extracted dataset from the Ethereum blockchain which we combine
with off-chain data from exchanges. This allows us to study a large part of the trans-
action flows related to the cryptocurrency ecosystem. From this aggregate system
view we deduct that movements on the blockchain and price and trading action on
exchanges are interrelated. The relationship is one directional: On-chain token flows
towards exchanges have little effect on prices and trading volume, but changes in
price and volume affect the flow of tokens towards the exchange.

Keywords Token economics · Blockchain · Data assimilation · Inference
1 Introduction

Econophysical analysis has been receiving increased attention in recent years and is
growing in popularity [11, 18]. The growth of data and ongoing digitization of society
is allowing an ever more fine-grained view of economic activity in which transac-
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tions and flows of assets are observable on a very granular level. The emergence of
blockchain is a unique phenomenon of this digital economy, inwhich, in a completely
decentralized structure [3], the flow of assets between individuals is automated and
publicly traceable. All transactions conducted on Bitcoin and Ethereum are saved
and traceable on their respective blockchains [17, 22]. Furthermore, many traded
tokens are based on ERC-20 contracts which can be also traced on the Ethereum
blockchain, with the price and trading action on cryptocurrency exchanges being an
important element of driving public exposure and user interaction with blockchain
technology.

The novel and unique nature of this phenomenon, raises the question of how
to analyze such a system. Established models in finance or standard data mining
techniques from computer science allow only for the study of specific elements of
the cryptocurrency ecosystem.

Some work such as [13, 19] have analyzed the graph structure of the Bitcoin
blockchain in order to learn about entities and interactions. Similar research has also
been conducted for the Ethereum blockchain as in [7]. Additional work was done
by [14] to identify entities on the blockchain. These approaches offer a heuristic
insight on blockchain interactions, but do not allow for more elaborate analysis of
the full cryptocurrency ecosystem and the economic dynamics and incentives related
to cryptocurrencies. Research based on empirical finance such as [10, 12] or [16] can
yield additional insights by using economic theory, but often work with aggregate
data that allow only for general analysis of cryptocurrency pricing dynamics, and
overlook individual transactional data and entities.

We thus propose to analyze the cryptocurrency ecosystem in a novel fashion by
interpreting it as an econophysical system. We argue that this is a very suitable
approach, because the study of aggregate outcomes of individual transactions and
particle flows from many sources bears resemble to physical systems [18]. We do so
by combining methods of physical sciences and econometrics.

In particular, we employ a data assimilation approach for the analysis of large
scale systems, which we combine with the functional form and interpretation of
an econometric time varying parameter model with a stochastic volatility element
[4]. Data Assimilation is a methodology to update a latent theoretical model with
observations of real data, a form of state-space modelling. This is commonly applied
in meteorology, hydrology and other physical sciences to study dynamic physical
systems [9]. This approach can be applied to many fields where it is necessary to
compute and update latent model parameters while ingesting new observations or
where uncertainty of a model and forecast need to be quantified [21].

In order to get an as accurate as possible representation of the full cryptocurrency
ecosystem, we collect and extract information from the most important sources of
cryptocurrency activity. We therefore collect transactional data from the Bitcoin and
Ethereum blockchains and supplement the dataset with additional trading data of
exchanges.

In an application of our methodology we study the relationship between transac-
tion flows of tokens on the blockchain and how this affects one of the major trans-
actional hubs of cryptocurrencies: exchanges. Specifically, how do properties such
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as trading volume and prices of cryptocurrency tokens relate to the on-chain inflow
of tokens to the exchange? Some exchanges can be mapped to particular addresses
or contracts on the blockchain [14]. Thus, although imperfect because it is difficult
to reliably follow changing addresses of exchanges throughout time, this approach
enables us to give approximate estimates to questions such as if supply and demand
dynamics of exchanges hold, e.g.: Does a large inflow of a particular token at an
exchange lead to an oversupply and thus decrease the price of the token? Although
it is not possible to identify individual buyers and sellers on exchanges, economic
theory postulates that prices are the aggregate outcome of individual transactional
behaviour. Thus, linking the price on an exchange with traceable blockchain flows to
the exchange is an important dynamic that deserves investigation and is represented
in our econophysical modelling approach.

Besides putting forward the idea that the cryptocurrency ecosystem can be inter-
preted as an econophysical system, we interpret model parameters and find evidence
that token flows do not affect price and trading behaviour, but that trading behaviour
affects on-chain token flows. We furthermore provide an experiment to show how
constantly updating the model dynamics by assimilating observations does not only
allow for interpretation of latent parameters, but also provides important information
for updating the model to improve model forecasting.

2 Econophysical Modelling

To represent and analyze the cryptocurrency ecosystem as econophysical system we
use a data assimilation approach. Consider a possibly non-linear turbulent physical
system [11, 21] where the state u is predicted by an approximate system model m
which is dynamically updated at discrete timesteps m(t, u) in the analysis step by
ingesting new observations.

The state vector u ∈ R
N consists of multiple subspaces that evolve dynamically

over time, where u = (u1, . . . , ui ), with u j ∈ R
N j and N1 + · · · + Ni = N , mod-

elling the latent parameter dynamics of the system. In order to map parameter space
to observation space, there is an observation operator H(u) mapping R

N to R
M ,

where M observations d at analysis timestep m(t, u) are given by:

d = H(u) + εu,0 (1)

the operator H(u) is of dimension M and the Gaussian noise term εu,0 follows
∼ N (0, Q0). We consider assimilation algorithms that filter dynamical systems of
a generalizable form. Data assimilation is a technique to incorporate noisy observa-
tions into a predictive model [2] to generate predictions and also update and estimate
parameter values which have a causal interpretation. Interpreting the system model
m as an economic time varying parameter model m(Δt, u, θ) allows for an interpre-
tation of the cryptocurrency system as dynamical system as well as the introduction
of additional parameters where θ = (φ, σ̃) are derived from economic theory.
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In this paper, a parametric model for the univariate case is given by:

ỹt = x̃tφt + ε̃t σ̃t (2)

φt = φt−1 + ν̃t (3)

log(σ̃2
t ) = log(σ̃2

t−1) + ξ̃t (4)

An observation d is represented by scalar value ỹt which is a function of multiple
other variables given by x̃t ∈ R

q which is a 1 × q vector. The relationship between
both variables is modelled by parameter matrix φt which is of corresponding dimen-
sion. The state vector is represented by φt describing how economic processes inter-
act over time whereas parameter σ̃ describes dynamic volatility of the system. The
distributional assumptions of the error terms are: ε̃t ∼ N (0, 1), ν̃t ∼ N (0, Q̃t ) and
ξ̃t ∼ N (0, R̃t ). Equation2 assimilates observations into the model, whereas Eq.3
and Eq.4 describe the latent dynamics of the system under analysis. To exemplify,
ỹt are observations of changes in the transaction volume of an exchange and x̃t is the
amount of token flowing into the exchanges. When assimilating these observations,
the parameters dynamics of Eqs. 3 and 4 are updated and describe the latent relation-
ship between these variables. In order to scale the system up tomultiple variables and
to include additional lag-coefficients the model is rewritten in a generalized matrix
notation:

yt = Φ1yt−1 + · · · + Φl yt−l + μt + εtσt (5)

where in this compact notation, Xt = [y′
t−1, . . . , y

′
t−l , 1]′ and Φ = [Φ1, . . . , Φl ,μ]′

with ′ denoting the transpose. Define K = (ql + 1) as the product of q variables and
lag length l including a constant. Thus Xt is of dimension K × 1 andΦ of dimension
K × q. Furthermore, yt is a q × 1 vector of variables under analysis, μt is the mean
vector and Φl is a q × q matrix of coefficients. σt and yt are of the same dimension
whereas εt is a diagonal matrix.

To include multiple lag-lengths and coefficient matrices, the coefficient matrix Φ

is vectorized. This is necessary for policy analysis while preserving markovian prop-
erties of the resulting state-space model. Thus define xt = I ⊗ Xt using Kronecker
product ⊗, where I is the unit matrix and furthermore define βt = vec(Φ), where
vec() indicates the stacking the columns of a matrix. The full model in state space
form is then given by:

yt = x ′
tβt + εtσt (6)

βt = Fβt−1 + vt (7)

log(σ2
t ) = log(σ2

t−1) + ξt (8)

with diagonal matrix F modelling autoregressive dynamics. In order to arrive at a
solution for the model and to include new observations optimally in the latent model
we obtain the model solution by the loss function including the latent parameters βt

and σt . The model solution is then given by the DA optimization:
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βt ,σt = argmin
β,σ

J (β,σ) (9)

with:

J (β,σ) = ||β − βt−1 + νt ||Q−1
t

+ ||log
(

σ2
t−1

σ2

)
+ ξt ||R−1

t
(10)

The resulting solution leads to a modified Kalman filtering algorithm to assimilate
new observations into the model, updating all model parameters [15]. After dis-
cussing the assimilated data, we validate the models forecasting performance and
discuss the economic interpretation of the parameter estimates in the following sec-
tions.

3 Data Collection

To obtain a representation of the cryptocurrency ecosystem we gather data from
sources in which users interact most commonly with cryptocurrencies. The data
consists of on-chain and off-chain cryptocurrency data. We define on-chain data as
data that is available on the blockchain, whereas off-chain data is defined as trading
data directly obtained from exchanges. We combine the flows of cryptocurrencies
on the Bitcoin blockchain as well as Ethereum by including tokens based on ERC20
tokens. This is complemented with price action of exchanges which are mapped to
blockchain addresses.

3.1 Mapping Exchanges to Bitcoin Addresses

Some entities choose to reveal their address voluntarily. If not, some work such
as [7, 13, 14, 19] has developed simple heuristics of identifying entities on the
Bitcoin blockchain which are defined as idioms of use. Using idioms such as “every
non-change output is controlled by a single entity” [1] and “an address is used
at most once as change” [14] can then be used to track and map entities on the
Bitcoin blockchain, by clustering addresses controlled by the same entity. Using this
approach it is possible to identify clusters belonging to online wallets, merchants and
other service providers such as exchanges by interacting with them. A challenge for
these de-anonymization approaches is their fragility, they loose accuracy over time
as protocol implementations might change and may also yield false positives [20].

Using similar heuristics as [14], the developer of https://www.walletexplorer.
com/ developed a platform for which individual flows to and the balance of clusters
belonging to entities is updated overtime. Given the inflow and outflow of Bitcoins
to these addresses clusters, the corresponding price and trading volume data of the
specific exchanges is mapped to the clusters. Inference models always suffer to some

https://www.walletexplorer.com/
https://www.walletexplorer.com/
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degree from noise and measurement error. Thus although imperfect, a combination
of these datasets gives an approximation of the relationship between on-chain and
off-chain activity.

3.2 Mapping Exchanges to ERC-20 Tokens

In order to map exchanges trading ERC-20 tokens on the Ethereum blockchain, a list
of exchanges and their addresses was constructed by taking the list all self-revealed
exchanges via https://etherscan.io/accounts/label/exchange/. Due to the Ethereum
networks protocol properties, once an externally owned account is identified, fol-
lowing it over time is less of an issue than in the Bitcoin protocol. Exchanges might
use accounts they do not publicly disclose, but the accounts that are disclosed can be
regarded as ground truth. In a second step, multiple ERC-20 tokens being related to
exchange addresses from the previous step were collected. Using the API of Bloxy
(https://bloxy.info/api_methods), data on ERC-20 tokens was gathered. The List
Tokens API-call allows for the collection of data on ERC-20 and ERC-721 tokens
such as the total number of transactions invoked by the transfer() and transferFrom()
methods. An excerpt is given in Table1. In the next step, the Token Holders API-
call allows for the retrieval of balance and address of token holders. We use a simple
heuristic assuming that when an address belonging to an exchange was actively send-
ing or receiving tokens, it must be a flow related to the exchange to which then the
price ismapped. Figure1a illustrates this, where a green node represents an exchange,
and a link represents a token flow. Entities interacting with it are represented by blue
and yellow nodes, which represent externally owned accounts and smart contracts
respectively. For each exchange node the corresponding trading data is mapped as
illustrated in Fig. 1b. We apply this procedure to the 60 most traded Ethereum based
tokens, based on the number of transfers.

3.3 Exchanges

The off-chain exchange data of the exchanges was obtained via the APIs of https://
min-api.cryptocompare.com/ and https://etherscan.io/tokens where trading volume,

Table 1 Example ERC token list obtained from API call

Symbol Name Smart contract address Transfer count

LPT Livepeer 0x58b6a8a3302369daec383334672404ee733ab239 5,522,6810

coToken coToken 0x03cb0021808442ad5efb61197966aef72a1def96 4,824,866

CK CryptoKitties 0x06012c8cf97bead5deae237070f9587f8e7a266d 4,146,609

EOS EOS 0x86fa049857e0209aa7d9e616f7eb3b3b78ecfdb0 3,570,224

TRX Tronix 0xf230b790e05390fc8295f4d3f60332c93bed42e2 2,890,298

https://etherscan.io/accounts/label/exchange/
https://bloxy.info/api_methods
https://min-api.cryptocompare.com/
https://min-api.cryptocompare.com/
https://etherscan.io/tokens
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(a) On-Chain flow of tokens to
exchanges in 48h time period

(b) Price and trading volume of tokens on single
exchange over time

Fig. 1 Figure a illustrates the on-chain flowof tokens.Green nodes are exchangeswhich receive and
send tokens from accounts and smart contracts, represented by blue and yellow nodes respectively.
Figure b shows the price and trading volume development for one exchange over time

as well as opening- and closing prices of each cryptocurrency token was obtained.
For Bitcoin, the reference price is USD. For ERC20 tokens, the price of tokens is
given in Satoshi levels because many tokens are not directly traded in USD. Trans-
lating a trading pair into a third currency such as EOS into Bitcoin and then USD
obtained from different exchanges will induce noise and biases in the results. Bit-
coin is furthermore the de-facto main exchange currency within the cryptocurrency
ecosystem, we thus conduct all analysis of tokens in Satoshi levels. The transactional
and exchange data used in the analysis is gathered hourly and daily from a timeperiod
from 2018/01/01 to 2020/01/14. All series are stationary by analyzing changes in
Δln(xt ) with outliers being removed and missing values interpolated.

In order to analyze the on-chainmovements and link them to exchangemovements
of prices over time, we focus on two main features from blockchain movements and
exchange action as given in Table2:

The token i flow to individual exchanges j are mapped and synchronised to
exchange trading data for all 60 token and their respective exchanges. Figure2 shows
the amount of tokens flowing and total transactions related to one exchange (a green
node in the previous graph figure) which allows us to establish a temporal link and
conduct inference to price data as previously shown in Fig. 1b.

4 Model Validation and Forecasting

We discuss how the representation of cryptocurrencies as dynamical system and
the resulting assimilation of new observations is used to improve the forecasting
performance of the model. The metric we choose to evaluate the model performance
is mean squared forecasting errors (MSFE) as given by:
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Table 2 Constructed features from token flows

Feature Description

Amounti, j Amount of tokens being received and send to
addresses associated to exchange

Transactionsi, j Number of times transactions are received and
send by addresses associated to exchange,
independent of token amount

Volumei, j The volume from and to the token being traded

Pricei, j The closing price of the token under analysis

Fig. 2 Flow of BNB tokens to Binance over time. The blue series is the amount of tokens flowing
into exchange, the orange series represents absolute amount of transactions conducted on one
exchange

MSFE =
N∑

n=0

(∑T−h
τ=τ0

(yrt,n − ŷt,n)2

T − h − τ0 + 1

)
(11)

where ŷt,n represents the model prediction, yrt,n the real observation with forecast
horizons defined by h = 1, and τ0 = 1 the starting period of the forecast for n vari-
ables. Figure3 depicts the assimilation process of the price series of Binance coin.
After initially larger forecasting errors the errors decrease after assimilating the
observations and updating the model parameters. The continuous updating of model
parameters indicates a convergence towards parameter values that achieve an optimal
model fit, with prediction errors decreasing over time. It is also observable how the
the errors are a number of magnitude smaller after assimilation of the data, showing
the models validity for forecasting purposes. For the full model the aggregate error
before assimilation is MSFE = 32.577 and MSFE = 0.204 afterwards, reducing
forecasting errors by several orders of magnitude.
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Fig. 3 Assimilating and Forecasting BNB coin. The orange series depicts forecasting errors before
assimilation and the blue series the forecast after assimilation

5 Analysis

We proceed discussing and interpreting the results of the assimilation procedure. The
model dynamics help to interpret and understand the structure of the cryptocurrency
economy. After assimilating the observations, the model state equations Eqs. 7 and 8
are updated, giving an indication of the model dynamics βt and σt . An excerpt of
the full state vector βt illustrating latent parameter dynamics is given in Fig. 4. In
the following section we focus on individual entries of the state vector βt,i which
have an econometric interpretation. Figure5 shows different volatility regimes σt,i

as given in Eq.8. While price volatility stays on a similarly low level the trading
volume fluctuates largely and tappers off towards the end of the sample, which gives
context for the other parameter estimates. To analyze the relationship between the
economic series we next focus on the dynamics of βt as in Eq.7.

Fig. 4 An overview of multiple time varying latent dynamics as given in Eq.7
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Fig. 5 Stochastic volatility values σt of price and volume changes on an exchange

5.1 The Relationship Between On-Chain and Off-Chain
Movements

We present and discuss results for multiple subsets of the cryptocurrency ecosystem.
We first focus and apply our model on the Binance exchange for it’s Binance coin
(BNB), as well as for other selected currencies and exchanges.We choose to focus on
Binance coin as illustrative example because its usage has actual economic benefits
for traders, by providing them a discount on trading fees. Thus, if there is a link
between trading activity andon-chain tokenflows,wehypothesize that the link should
be very pronounced for BNB. We later conduct robustness checks by presenting
results for other exchanges and currencies such as Bancor (BAT).

An overview was given in the previous section by Fig. 1a, b, which describe the
on-chain dynamics of prices and trading volumes over time, and the number of
transactions as well as amount of tokens flowing towards the exchange respectively.

5.2 Do On-Chain Movements Affect Prices?

We first investigate the effect of exchange trading volume and token inflow on prices.
Figure6 shows that as expected, there is a strong relationship between prices and
trading volume. Volume changes affect the returns of tokens negatively, establishing
a strong link between both variables, a common and established financial link [6],
thus variables related to cryptocurrency exchanges exhibit similar patters as regular
financial exchanges. In the next step, when studying the relationship between the
flow of tokens towards an exchange and prices in Fig. 7, it becomes apparent that
on-chain token-inflows are noisy and erratic with an average effect on price changes
close to zero.

To extend evidence we furthermore analyze the effect of tokenflows on trading
volume. A further studying of Fig. 8 also shows that an inflow of tokens has little
effect on the trading volume on an exchange with parameter values being erratic
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Fig. 6 Time varying latent effect of trading volume on prices for the BNB-token on Binance

Fig. 7 Time varying latent effect of tokenflow on prices for BNB-token

and fluctuating around zero. This provides evidence that trading variables such as
price and volume are interrelated as already established, and that the on-chain flow
of tokens has little impact on trading action. Thus simple theories such as that a
large inflow of tokens could decrease prices on an exchange are not supported by the
model dynamics.

5.3 Do Price and Trading Volume Affect the Flow of Tokens?

When reversing the analysis, a different pattern arises. Observing the parameter in
Fig. 9, representing how price and trading volume affect tokenflows, there is evi-
dence that trading volume and prices lead to changes in tokenflows related to the
exchange. The effect is initially positive and then negative, with troughs at 2018/10
and 2019/10. The series is more pronounced than the erratic series of tokenflows
on price effects (Fig. 8) in the previous section. The signal is also very pronounced
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Fig. 8 Time varying latent effect of tokenflows on volume for BNB-token

Fig. 9 Time varying latent effect of price changes on tokenflow for the BNB-token on Binance

in Fig. 10, showing that increases in trading volume on an exchange affect the flow
of tokens of the exchange. The parameter series is much larger in magnitude and
resembles a highly persistent series, whereas parameters representing the effect of
tokenflowon exchange variables appearmore like noise processes.ComparingFigs. 7
and 8 directly with the other series makes this more apparent, and similar dynamics
are found in different model setups. The autocorrelation example in appendix Fig. 13
illustrates the difference.

Well established econometric theory states that highly persistent series are associ-
ated with processes in which innovations have long lasting structural effect, whereas
innovations in noise processes are negligible and will revert to the mean eventu-
ally [5, 8]. Thus, independent of the exact parameter value, highly persistent βt,i

series imply a structural relationship of exchange trading dynamics leading to on-
chain tokenflows, whereas for the reverse this cannot be deduced due to the erratic
parameter series.

Given these results, it is deducible that there is a connection between token-
flows on the blockchain as well as trading action on an exchange. Simple supply
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Fig. 10 Time varying latent effect of trading volume on tokenflow for the BNB-token on Binance

Table 3 Mean Value of Latent Parameters βt,i

Effect t on t + 1 Pricet+1 Volumet+1 Token f lowst+1

Pricet – 1.771 1.651

Volumet 0.273 – 4.061

Token f lowst 0.002 0.008 –

and demand rules do not hold, since the inflow of tokens does not affect prices
or volume. Nevertheless, when volume or prices move, they do affect the flow of
tokens towards that exchange.Apossible interpretation is that strongprice and trading
movements raise attention of userswhich increase flows towards that exchange. It can
furthermore attract arbitrageurs which send deposits to an exchange to profit from
price differences. Table3 reports the absolute mean of the parameters βt over time, as
discussed above as well as additional parameters not depicted in the previous section.
Changes in the column at time t imply future changes at time t + 1 in the rows. Over
the full sample, price changes affect volumes and tokenflows. Volume also affects the
other variables, with particularly high values on token flows. In reverse, the average
effect of token flows on prices and volume is weak, reinforcing the argument that
off-chain and on-chain interaction is one-directional.

5.4 Robustness Checks

To confirm our results we conduct robustness checks for other currencies. The illus-
tration in Fig. 11a represent the findings of the model for Bancor (BAT). The figure
depicts a similar pattern as in the previous analysis with a persistent series depicting
the influence of price changes on tokenflow. Figure11b reveals the same pattern of
tokenflows having little effect on exchange trading activity. Results are similar across
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(a) βi price on tokenflows (b) βi tokenflows on volume

Fig. 11 The effects of price on tokenflows, and tokenflows on volume for BAT coin

(a) βi price on tokenflows (b) βi tokenflows on volume

Fig. 12 The effects of price on tokenflows, and tokenflows on volume for Bitcoin flowing to
Poloniex

other test setups, with the direction of influence being not from tokenflow to price
changes, but from changes in price and trading volume to the flow of tokens.

We show an additional setup modelling the flow of Bitcoins towards the Poloniex
exchange and find similar results. The effect of price changes to Bitcoins flowing
towards the exchange are given in Fig. 12a. It is more noisy and on average closer
to zero, but the dynamics of the process are more persistent and are much larger
in magnitude than in the reverse case where the effect of tokenflows on volume
resembles much more erratic noise around a zero mean, which is in line with the
previous findings.

6 Conclusion

We put forward the idea to treat the emerging cryptocurrency ecosystem as an econo-
physical system. We analyze the system by deriving and solving a custom loss func-
tion for the model. The model is ingesting data obtained from a variety of on-chain
and off-chain sources, giving an approximation of the full cryptocurrency ecosys-
tem. We also show that the dynamic system representation is applicable for gen-
erating forecasts of potential changes in price as well as flows on the blockchain.
This representation enables insights into otherwise unobservable parametric pricing
and market dynamics. The model results indicates that there is a weak relationship
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between on-chain flows and off-chain action. The evidence shows that the direc-
tion of interaction is one-sided and that simple supply and demand dynamics are
not observable because the exchange trading action is not affected by token inflows
towards a specific exchange. Nevertheless, there is evidence for a reverse effect. The
model provides evidence that price action and increases in trading volume drive the
inflow of tokens towards a particular exchange. The generalizability of the model
allows for further analysis such as investigating the difference between flows stem-
ming from externally owned accounts and smart contracts. Other extensions of our
work can include the setup of a real-time assimilation scheme, in which the data is
constantly ingested by the model, providing a live activity overview of the cryptocur-
rency ecosystem. Ongoing work includes the inclusion of high frequency orderbook
data which allows to analyze transaction flows on minute and second frequencies.
Further work on econophysics modelling and the study of the aggregate outcome
of individual transactions will be of use to understand the underlying dynamics of
social systems and market activity.

Appendix

See Fig. 13.

Fig. 13 The autocorrelation functions of the effect of prices on tokenflows (top) and tokenflow on
volume (bottom) for BNB coin as given in Figs. 10 and 7 illustrate the difference in persistence
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Stress Testing Diversified Portfolios: The
Case of the CoinShares Gold and
Cryptoassets Index

Aikaterini Koutsouri, Michael Petch, and William J. Knottenbelt

Abstract Stress testing involves the use of simulation to assess the resilience of
investment portfolios to changes in market regimes and extreme events. The quality
of stress testing is a function of the realism of the market models employed, as
well as the strategy used to determine the set of simulated scenarios. In this paper,
we consider both of these parameters in the context of diversified portfolios, with
a focus on the emerging class of cryptoasset-containing portfolios. Our analysis
begins with univariate modelling of individual risk factors using ARMA and GJR–
GARCH processes. Extreme Value Theory is applied to the tails of the standardised
residuals distributions in order to account for extreme outcomes accurately. Next, we
consider a family of copulas to represent the dependence structure of the individual
risk factors. Finally, we combine the former approaches to generate a number of
plausibility-constrained scenarios of interest, and simulate them to obtain a risk
profile. We apply our methodology to the CoinShares Gold and Cryptoassets Index,
a monthly-rebalanced index which comprises two baskets of risk-weighted assets:
one containing gold and one containing cryptoassets. We demonstrate a superior
risk-return profile as compared to investments in a traditional market-cap-weighted
cryptoasset index.

Keywords Cryptoassets · Gold · Index · Risk modelling · Stress testing

A. Koutsouri (B) · W. J. Knottenbelt
Department of Computing, Imperial College London, London SW7 2AZ, UK
e-mail: k.koutsouri@imperial.ac.uk

W. J. Knottenbelt
e-mail: wjk@doc.ic.ac.uk

M. Petch
CoinShares, Octagon Point, 5 Cheapside, St Paul’s, London, England EC2V 6AA, UK
e-mail: mpetch@coinshares.co.uk

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
P. Pardalos et al. (eds.), Mathematical Research for Blockchain Economy,
Springer Proceedings in Business and Economics,
https://doi.org/10.1007/978-3-030-53356-4_4

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53356-4_4&domain=pdf
mailto:k.koutsouri@imperial.ac.uk
mailto:wjk@doc.ic.ac.uk
mailto:mpetch@coinshares.co.uk
https://doi.org/10.1007/978-3-030-53356-4_4


44 A. Koutsouri et al.

1 Introduction

Stress testing concepts date back to the early 1990s. During this period, stress testing
was mainly used by individual banks for their own risk management plans surround-
ing their trading activities. The idea of using stress testing was only standardised in
1996 by the Basel Committee on Banking Supervision (BCBS) when an amendment
was made to the first Basel Accord (Basel I) [1] that recognised stress testing as an
effective way to measure risk. In the second Basel Accord (Basel II) [2], the BCBS
asked banks to conduct internal stress testing. However, by the time the financial
crisis began in 2007, Basel II was not yet fully implemented internationally.

The financial crisis is an example of a useful stress situation, when banks had
to restrict their lending and the limitations of standard value-at-risk methodologies
became apparent. At the time, most banks were not properly prepared to accom-
modate for this situation, which can be linked to the lack of scenario-based risk
management planning. Post financial crisis, stress testing has increased widely in
implementation across jurisdictions and is used by banks, international organisations,
national authorities and academics. Stress tests performed by banks are assessing
whether there is enough capital on hand to withstand a potential financial disaster or
economic crisis and the results are required to be made publicly available.

In the cryptocurrency industry, while there have been numerous studies of
price dynamics [6, 8, 11], there has been a lack of research in risk management
for cryptocurrency-related investment products (e.g. cryptocurrency indices, funds,
ETPs, etc.). There is, however, a growing awareness of the importance of this issue
in the industry. Additionally, the US Federal Reserve is considering adding to their
stress testing framework the scenario of a bitcoin market crash [3]. Nonetheless,
there is still plenty of work to be done on the already-existing investment products
in the cryptocurrency market by the product owners and potentially market supervi-
sors. On that note, our primary analysis target in this paper is the CoinShares Gold
and Cryptoassets Index (CGCI). In the case of the CGCI, we aim to isolate its main
design principles and propose a framework for scenario-based risk management that
is able to unveil vulnerabilities in certain market conditions.

The remainder of this paper is organised as follows. Section 2 presents the essen-
tial background on the principles behind the design of the CGCI and stress testing
techniques in practice. In Sect. 3, we elaborate on the notion ofARMA–GARCH type
filtering and how this can be combined with Extreme Value Theory concepts to pro-
duce empirical distribution functions of residuals. We further introduce the concept
of copulas as an effective mechanism to model dependency structures. Section 3.4
discusses the importance of introducing plausibility constraints in formulated sce-
narios. Section 4 demonstrates a number of selected stress scenarios for the CGCI
that reflects an improved risk profile compared to a traditional market-cap-weighted
cryptoasset index. Section 5 concludes.
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2 Background

2.1 Index Methodology

The CoinShares Gold and Cryptoassets Index (CGCI) [12] is a monthly rebalanced
index that employs an inverse volatility weighting scheme for twomain components:
an equally-weighted basket of five cryptoassets, and physical gold. The main pur-
pose of the CGCI is to provide exposure to the alternative asset space while utilising
some means of principled risk control leading to lower volatility. The crypto-basket
component of CGCI is composed of the top five eligible cryptoassets based on the
6-month rolling mean of the free-float market capitalisation and their composition is
reviewed on a monthly basis when the rebalancing occurs. A more detailed presen-
tation of the index is presented in the full methodology document.1

The design of the CGCI is based on two basic premises; the high volatility levels
of the cryptoasset space, which brings with it a high level of risk, together with their
high intraclass correlation, which limits the diversification benefits. The second is
the lack of correlation with physical gold [12]. Based on those characteristics, and
Shannon’s Demon method of diversification and rebalancing [19], the CGCI utilises
the concept of volatility harvesting through (a) forming a basket of cryptoassets
and (b) combining it with gold using weighted-risk contribution as a rebalancing
mechanism.

Given weighting x = (x1, x2) for the crypto-basket and gold respectively, implied
correlation ρ = 0, and supposing that we desire the risk contribution of the crypto-
basket to be α times the risk contribution of gold, x1 is given by:

x1 =
√

α σ−1
1√

α σ−1
1 + σ−1

2

(1)

Taking into consideration the former, the index is calculated following a two-stage
allocation scheme that involves:

1. Computation of the historical volatility of (a) the equally-weighted crypto-basket,
and (b) gold;

2. Asset allocation among the crypto-basket and gold expressed as the bivariate
weighted risk contribution problem presented in Eq. 1. The risk contribution ratio
is set as α = 4, indicating that 80% of the total risk emanates from the crypto-
basket.

The CGCI proposes a mechanism for effective risk control that is sufficient
because (a) the cryptoassets class and gold are characterised by respectively high
and low levels of volatility respectively, and (b) exhibit insignificant correlation. As
such, it is important to consider the effect of changes in both factors.

1To be made available online in due course by CoinShares (UK) Limited.
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2.2 Stress Testing

There are several definitions of stress tests in literature. Studer [21] describes stress
tests as the concept of maximum loss over ellipsoidal scenario sets. The stress testing
problem is also described by Breuer et al. [4] who propose a number of refinements
to Studer’s initial approach. According to [4], the quality of the stress test crucially
depends on the definition of stress scenarios, which need to meet three requirements:
plausibility, severity and suggestiveness of risk-reducing actions. Lopez [14] further
refers to stress tests as risk management tools that aim to quantify the impact of
unlikely, yet plausible, movements of financial variables on portfolio values.

Stress test design methods vary in practice and are typically divided into twomain
categories: univariate and multivariate. While univariate stress tests (sensitivity anal-
ysis) are easy to perform, they are considered insufficient, as they fail to incorporate
the dependence structure of the identified risk factors.Multivariate approaches exam-
ine the effects of simultaneous changes in more than one variables and are usually
scenario-based. Breuer et al. [4] highlight the importance of an explicit choice of
scenarios while Nyström et al. [18] identify the main elements of scenario-based
risk management:

1. Recording the market value of the portfolio components
2. Generating scenarios based on a calibrated model of the portfolio behaviour
3. Estimation of the returns distribution
4. Application of risk measures in the obtained distribution

Regarding the model calibrations in step 2, Cherubini et al. [5] consider the
bivariate equity portfolio case and suggest a univariate model for each of the two
marginal distributions of the portfolio’s risk factors (stocks), and one conditional
copula approach for the underlying dependence structure.

In the case of CGCI, we identify twomain risk factors (the crypto-basket and gold
component respectively) and we attempt to model their evolution using stochastic
processes. The credibility of results when we apply risk measures to the portfolio
distribution, is heavily dependent on the choice of model, and as highlighted by
Nyström et al. [18], one should consider a series of stylised facts when simulating
the evolution of risk factors. McNeil et al. [15] discuss those stylised facts that
characterise the returns of financial time series which can also be observed in the
CGCI components.

Stylised facts on autocorrelations and volatility clustering, as proposed by Cont
[7], suggest that (i) linear autocorrelations of returns are expected to be very small,
(ii) autocorrelation function of absolute returns decays slowly as a function of the
time lag and (iii) volatility events are stochastic and appear in clusters. Additionally,
we expect (iv) asymmetric and heavy tails in the unconditional distribution of returns
that exhibit power-law or Pareto-like behaviors.When examining conditional returns
that have been corrected for heteroskedasticity, tails are less heavy.
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3 Multivariate Stress Testing

3.1 Univariate Risk Factor Modelling

Following the definitions of McNeil et al. [15], the value of a given portfolio at time
t can be denoted as Vt and modelled as a function of time and a random vector
X t = (Xt,1, . . . , Xt,d)

′, observable at time t and therefore expressed in the form of
Vt = f (t, X t ), which is typically referred to as mapping of risks. The change in
the value of the portfolio will be ΔVt+1 = Vt+1 − Vt , the loss is defined as Lt+1 :=
−ΔVt+1 and its distribution is referred to as loss distribution. In this study, we will
ultimately be concerned with the distribution ofΔVt+1, termed as the Profit and Loss
(P&L) distribution.

The evolution of each risk factor can be expressed as an autoregressive moving
average (ARMA) process, which accounts for autocorrelation and aims to model the
conditional mean. Additionally, conditional homoskedasticity is rejected in financial
time series, and volatility is stochastic and forecastable. Generalised autoregressive
conditional heteroskedasticity (GARCH) processes can adequately account for this
fact. Empirical evidence also suggests that positive innovations to volatility correlate
with negative market information (and vice versa). Glosten et al. [10] account for this
asymmetry through modelling the positive and negative shocks on the conditional
variance asymmetrically (GJR–GARCH).

For a combination of the ARMA and GJR–GARCH approaches applied to a time
series Xt , we let εt = Xt − μt = σt Zt denote the residuals with respect to the mean
process (ARMA error) of order p1, q1. We assume that σt follows a GARCH(p2, q2)
specification, where p2 is the order of the squared innovation lag (ε2t ) and q2 is the
order of the variance lag (σ2

t ) and finally obtain the asymmetric ARMA(p1, q1) −
GARCH(p2, q2) equations:

Xt = μ +
p1∑

i=1

φi (Xt−i − μ) +
q1∑

j=1

θ jεt− j + εt

σ2
t = ω +

m∑

j=1

ζ jv j t +
p2∑

i=1

(
αiε

2
t−i + γi It−iε

2
t−i

) +
q2∑

j=1

β jσ
2
t− j

(2)

where ω is a volatility offset term, γ j represents the leverage term and m denotes the
number of possible external regressors v j . The indicator function It takes on value
of 1 for εt ≤ 0 and 0 otherwise.

The main assumption of GARCH models states that standardised residuals are
independent and identically distributed (i.i.d.), a key fact to enable us to examine
extreme events at the tails of the distributions. In this paper we opt for (a) a Ljung-
Box test on standardised residuals to check for evidence of serial autocorrelation, and
(b) a Li-Mak test [13] on the standardised residuals to check for remaining ARCH
effects.
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3.2 Tail Behavior Estimates

Stress scenarios describe how the portfolio would perform under extreme market
moves, a fact that yields the modelling process of the risk factors’ tails crucial.
ExtremeValue Theory (EVT) approaches are specifically concerned with the asymp-
totic behavior of the left and right tails separately. The key assumption of EVT is
that it considers i.i.d. sequences. The propagation of asymmetric, heavy-tailed char-
acteristics in the GARCH standardised residuals [22] and their strict white noise
behavior, allows for EVT application to the tails. Combined with a non-parametric
method for the centre, we can explicitly provide the filtered residual distribution for
further simulations.

There are two main approaches that isolate extreme values, block maxima and
threshold exceedance models. This is due to the fact that the former study the time
series of maxima of consecutive time-series blocks and therefore might disregard
large (and often important) portions of the original dataset. In contrast, threshold
exceedance methods study all events that exceed a specified high threshold. This
study aims to fit a Generalised Pareto Distribution (GPD, the main distributional
model for exceedances over threshold) to excess standardised GARCH innovations.

Given a sequence of i.i.d. random values, the Generalised Pareto cumulative dis-
tribution function is given by:

Gξ,β(x) =
{
1 − (1 + ξx

β
)−1/ξ, ξ �= 0

1 − e−x/β, ξ = 0
(3)

where ξ and β > 0 denote the shape and scale parameters, x ≥ 0 when ξ ≥ 0 and
0 ≤ x ≤ −β/ξ when ξ < 0. Given that ξ < 1, the GPDmean is E(X) = β/(1 − ξ).
Also, given a randomvalue X with aGPDcumulative distribution function F = Gξ,β ,
the cumulative distribution function of the excess distribution over threshold u is
given by:

Fu(x) = Gξ,β(u)(x) = P(X − u ≤ x | X > u) = Gξ,β(u)(x + u) − Gξ,β(u)(u)

1 − Gξ,β(u)(u)
,

where β(u) = β + ξu, 0 ≤ x < ∞ if ξ ≥ 0 and 0 ≤ x ≤ −(β/ξ) − u if ξ < 0. The
excess distribution remains a GPD with the same shape parameter ξ but with a
scaling parameter that grows linearly with the threshold parameter u. The mean
excess function of the GPD is given by:

e(u) = E(X − u | X > u) = β(u)

1 − ξ
= β + ξu

1 − ξ
, (4)

where 0 ≤ u < inf if 0 ≤ u < 1 and 0 ≤ u ≤ −(β/ξ) if ξ < 0. It can be observed
that the mean excess function is linear in the threshold u, which is a characterising
property of the GPD and will assist with the choice of u in later sections.
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3.3 Dependence Concepts

In a multivariate approach to risk management one should consider the risk factors’
dependence structure. In the case of CGCI, the lack of correlation between the crypto-
basket and the gold component is a basic premise that allows for principled risk
control through periodic rebalancing. To this end, it is critical to incorporate the
dependence structure to the marginal behaviours and investigate the risk sensitivity
to different dependence specifications.

In order to quantify the dependence structure, we utilise the concept of copulas,
a tool that allows us to decompose a joint probability distribution into its marginals.
A d-dimensional copula is a distribution function with standard uniform marginal
distributions, that represents a mapping of the unit hypercube into the unit interval in
the form of C : [0, 1]d → [0, 1]. The practicality of copulas is highlighted through
Sklar’s Theorem that states that any multivariate joint distribution can obtained
through (a) the univariate marginal distribution functions and (b) a copula which
describes the dependence structure between the variables. Copulas lend themselves
particularly useful for this study, where the marginal distributions been defined in
detail through the ARMA–GARCH–EVT approach.

For this study we consider two implicit copulas; the Gaussian and t-copula. Given
a multivariate normal random vector Y ∼ Nd(μ, �), its copula is aGaussian copula
and, under the property of invariance under monotone increasing transformations, it
is the same as the copula of X ∼ Nd(0, P), where P is the correlation matrix of Y .
In two dimensions, the Gaussian copula is given by:

CG
ρ (u1, u2) = ΦP(Φ−1(u1),Φ

−1(u2))

=
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
1

2π(1 − ρ2)1/2
exp

(−(s21 − 2ρs1s2 + s22 )

2(1 − ρ2)

)
ds1ds2

where Φ and ΦP denote the standard univariate normal distribution function and
joint distribution function of X respectively, P is the correlation matrix and ρ is the
correlation of X1, X2 (unique parameter of P in the bivariate case).

We can similarly define a 2-dimensional t-copula of X ∼ td(ν, 0, P) by introduc-
ing an additional parameter, namely the degrees of freedom:

Ct
ρ,ν(u1, u2) = tP,ν(t

−1
ν (u1), t

−1
ν (u2))

where tν and tP,ν are the standard univariate t distribution function and joint dis-
tribution function of X respectively with ν degrees of freedom, expectation 0 and
variance ν

ν−2 , and P is the correlation matrix of X1, X2. The degrees of freedom in
the t-copula allows to adjust the co-movements of marginal extremes, and that makes
t-copulas a popular choice for applications that stress the tail dependencies of risk
factors.

The estimation of the parametersθ of a parametric copulaCθ is performed through
maximum likelihood. If F̂1, . . . , F̂d denote estimates of the marginal distribution
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functions, we can construct a so-called pseudo-sample of observations from the
copula that consists of the vectors Û1, . . . , Ûd , where

Û t = (Ût,1, . . . , Ût,d)
′ = (F̂1(Xt,1), . . . , F̂d(Xt,d))

′.

The MLE is obtained through maximising:

ln L(θ; Û1, . . . , Ûn) =
n∑

t=1

ln cθ(Û t )

with respect to θ, where Û t denotes the pseudo-observation from the copula and cθ

is the copula density. A goodness-of-fit test can be further used in order to evaluate
whether the data is appropriately modelled [9, 20].

3.4 Scenario Plausibility

The concepts described in the previous sections are combined towards a scenario
generation framework that can be summarised in the following steps:

Model Fitting

1. Define the d-dimensional risk factor vector X t = (Xt,1, . . . , Xt,d)
′, observable at

time t , and obtain the logarithmic returns time series r t = (rt,1, . . . , rt,d)′
2. Fit an appropriate asymmetric ARMA–GARCHmodel to r t , and obtain the stan-

dardised residuals Ẑt = (Ẑt,1, . . . , Ẑt,d)
′

3. Estimate themarginal distribution functions F1(Z1), . . . , Fd(Zd) of the i.i.d. stan-
dardised residuals, empirically for the body and with a GPD for the tails

4. Transform Ẑt to uniform variates Û t = (Ût,1, . . . , Ût,d)
′ by inversion

5. Estimate parameters θ of an appropriate copula Cθ with MLE, given the pseudo-
observations Û t

Scenario Generation

1. For a given sample size m, horizon n and parameters θ, simulate n × m points of
the random vector U = (Ut,1, . . . ,Ut,d)

′, with distribution function Cθ

2. Given the margins F1, . . . , Fd from step 3 of the fitting process, use quantile
transformation to translate to Zt = (F←

1 (Ut,1), . . . , F←
d (Ut,d))

′
3. Provide the n × m standardised innovationsmatrix pairs to the calibratedARMA–

GARCH models and simulate m paths for each risk factor, X t,...,t+n

4. Given the risk factor mapping Vt = f (t, X t ) and the simulated returns, construct
m portfolio paths and obtain the P&L distribution

When examining the credibility of stress test results, plausibility is an important
quality criterion that has been studied by existing literature [4, 16]. The problem set-
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Fig. 1 Scenario generation procedure for 2 risk factors

ting in those studies consists of a set of elliptically distributed risk factors X t , a set
of scenarios that represent factor movements, and a linear P&L function. The Maha-
lanobis distance is introduced a scenario restriction tool that respects the elliptical
symmetry and authors utilise it to define themost likely scenarios given a pre-defined
quantile of loss.

In this study, the ultimate goal is to observe variations in the P&L distribution;
we do not examine the intersection of iso-P&L lines with iso-plausibility ellipses.
Nevertheless, we utilise the concept of excluding scenario outliers, as it can bolster
the credibility of long-horizon simulations. To this end, preceding step 5 of the
described scenario generation procedure, for each set X t,...,t+n , we obtain P&L sets
PL1, . . . ,PLd ; we compute theMahalanobis distanceMD(PLi ) andfilter out samples
that exceed a pre-specified percentile of the underlying Chi-Squared distribution of
MD. A schematic diagram of the scenario generation procedure in a 2-dimensional
risk factor environment is presented in Fig. 1.
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4 Analysis and Results

4.1 Index Replication and Risk Mapping

In the case of CGCI, we isolate two risk factors, namely the crypto-basket and the
gold component. The crypto-basket is formulated as an equally-weighted basket of
5 cryptoassets, each with a weight of 0.2. The crypto-basket price base level is set
on EW0 = 100 on July 1st, 2015.

The crypto-basket price from January 2nd, 2016 onwards is given by:

EWt =
⎛

⎝1 +
∑

i∈Nc,t

xi,R(t) ×
(

Pi,t
Pi,R(t)

− 1

)⎞

⎠ × EWR(t) (5)

where

• Nc,t is the set of the 5 cryptoassets constituents on day t
• R(t) is the most recent CGCI rebalancing date preceding t
• Pi,t is the closing price for cryptoasset i on day t , expressed in USD
• Pi,R(t) is the closing price for cryptoasset i on the last rebalancing date preceding
t , expressed in USD

• xi,R(t) is the weight of cryptoasset i on the last rebalancing date preceding t , equal
to 0.2

• EWR(t) is the crypto-basket price on the last rebalancing date preceding t

The weighting between the crypto-basket and gold in the CGCI is computed
through Eq. 1. The Index base level is set on Index0 = 1 000 on January 1st, 2016.

The Index level on day t from January 2nd, 2016 onwards is calculated as:

Indext =
⎛

⎝1 +
∑

i∈Nt

xi,R(t) ×
(

Pi,t
Pi,R(t)

− 1

)⎞

⎠ × IndexR(t) (6)

where

• Nt represents the 2 CGCI components (crypto-basket and gold) on day t
• xi,R(t) is the weight of constituent i on the last rebalancing date preceding t , equal
to the WRC allocation result

• IndexR(t) is the CGCI price level on the last rebalancing date preceding t

We follow Eqs. 5 and 6 and replicate the price time series for the CGCI and
transform to logarithmic returns.
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4.2 Baseline Scenario Simulation

In this section we simulate a number of scenarios and evaluate the impact of stress in
the main assumptions of the CGCI. We differentiate between the baseline, historical
and hypothetical scenario. The first simulation describes as realistically as possible a
recent index P&L profile that should serve as a benchmark to evaluate the severity of
volatility or correlation shocks. The calibration period is chosen to include all daily
observations of 2019.

The validity of stylised facts presented in Sect. 2 is verified in Figs. 8, 9, 10, 11,
12 and 13 in Appendix A for the CGCI components; therefore asymmetric ARMA–
GARCHprocesses are likely to explain their evolution.We assume a t-distribution for
the residuals for the ML process, iterate through pair-wise values of p ∈ [1, 4], q ∈
[0, 4] and choose the combination that yields the minimum AIC. The fitting results
are presented in Table 1 of Appendix B.

Next, we estimate the semi-parametric distribution function of the standardised
residuals. The linearity of the mean excess function can be used as a diagnostic
to assist the selection of appropriate thresholds for the tails. Since the shape and
scale parameters in Eq. 4 will be estimated after the threshold is defined, we use an
empirical estimator for themean excess function for positive-valueddata X1, . . . , Xn ,
given by:

eEMP(u) =
∑n

i=1(Xi − u)I{Xi>u}∑n
i=1 I{Xi>u}

(7)

We inspect the plot
(
Zi , eEMP(Zi )

)
, for the positive (Figs. 14 and 16, Appendix

A) and for absolute values of the negative innovations (Figs. 15 and 17, Appendix
A). For each tail, we define the threshold u := Zi for such i , from which the sample
becomes approximately linear for higher values and obtain the parametric GPD tails.
The baseline parameters can be found in Table 1. Combined with a Gaussian ker-
nel smoothed interior, we obtain the baseline semi-parametric distribution function,
displayed in Figs. 2 and 3.

Given the distribution functions Fc, Fg , we perform inverse transform sampling to
thefittedARMA–GJR–GARCHstandardised residuals andfit a copula to the pseudo-
sample (Table 1). We proceed with the t-copula for the remainder of this paper, as
it yields the maximum log-likelihood and provides the means for correlation stress
testing through its parameters (ρ, ν).

With the ARMA–GJR–GARCH parameters, cumulative distribution functions,
fitted t-copula for the residuals and a 3-month simulation horizon, we produce 10000
paths for each risk factor, X t,c, X t,q . We filter out all path pairs that yield an MD
value that exceeds the 99th percentile of the underlying Chi-Squared distribution,
and use the remaining to produce m ′ < m paths for the CGCI. Finally, we compute
the P&L at the end of period for each path pair and get the baseline P&L distribution
function. The generated scenarios with theMD plausibility bound, and the final P&L
distribution for the baseline scenario can be found in Figs. 4 and 5.



54 A. Koutsouri et al.

Fig. 2 Semi-parametric
CDF Crypto-basket residuals

Fig. 3 Semi-parametric
CDF Gold residuals

We can also choose to generate a baseline scenario for single risk factor portfolios.
In this case, the pseudo-random observations of the residuals can be derived directly
from the their cumulative distribution functions. We use this approach to generate
10000paths of returns for theMVISDigitalAssets 5 Index [17] (MVDA5)—amarket
capitalisation-weighted index which tracks the performance of the five largest and
most liquid cryptoassets—and compare its P&L distribution with the one derived
for the CGCI. The details of the fitting process for the MVDA5 baseline scenario
and the plot of the semi-parametric residual distribution can be found in Table 1 of
Appendix B and Fig. 18 of Appendix A.
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Fig. 4 CGCI baseline
scenarios: Mahalanobis
plausibility ellipses

Fig. 5 CGCI baseline
scenarios: P&L distribution

4.3 Historical and Hypothetical Scenarios

The model fitting process can be modified to generate stress scenarios that can be
compared against the baseline. First, we change the calibration period to reflect
stressfulmarket conditions. Those historical scenarios are commonly used in practice
because they are based on events that are observed, and therefore likely to reoccur.
For CGCI case, we generate the historical scenarios by calibrating the models in
the period of 2018-01-01 to 2018-12-31, as it reflects very large downward price
movements in the cryptoasset space.

Weuse this sample to fit theARMA–GJR–GARCHmodel for both risk factors and
obtain the i.i.d. standardised residuals. Following the same steps as in Sect. 4.2, we
model the tails and produce the semi-parametric cumulative distribution functions.
The new model parameters can be found in Table 1 of Appendix B. We transform
the residuals to uniform variates and fit an appropriate t-copula (Table 1 of Appendix
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B). With the new parameters we generate 10000 paths for each risk factor, filter out
implausible pairs, compute the P&L at the end of the period and obtain the new P&L
distribution that corresponds to the historical scenario. A single-factor approach is
also used to produce the MVDA5 historical P&L distribution. While the historical
scenarios can be used to assess the portfolio’s performance under realised stressful
market conditions, it is biased towards past experience and fails to examine plausible
stress events that have not occurred yet.

Additional vulnerabilities are revealed with the generation of hypothetical sce-
narios. In order to test the resilience to a potential increase in correlation between
the CGCI components, we increase the parameter ρ of the t-copula when generating
pseudo-samples. We further choose to decrease the degrees of freedom to increase
the likelihood of joints extremes. Additionally, we shock the risk factors’ volatilities
by changing the ARMA–GJR–GARCH volatility constant, ω, and produce volatile
risk factor paths. For this study, wemodify those parameters such that ρ = 0.9, ν = 2
and ω = 10ωb, where ωb denotes the volatility constant. The P&Ls that are derived
through the modified copula is presented in Fig. 19. The same volatility shock is
introduced to the MVDA5 volatility constant to obtain its hypothetical scenario risk
profile.

Figures 6 and 7 present a comparison of the Baseline, Historical and Hypothetical
Scenarios for the case of CGCI and MVDA5. In the case of the CGCI, the slope of
the historical P&L distribution is visibly less steep compared to the baseline. The
heavier lower tail further confirms the increased risk in the historical scenario. In
Fig. 6, the probability of a positive return in the historical scenario lies around 31%
compared to 58% for the CGCI baseline. When it comes to the volatility-shocked
scenario, it does not differ significantly around the mid-section, with the probability
of profit remaining around 58%, but the CDF is slightly heavier on the upper and
lower tail. A single correlation shock impacts the risk profile even less, while a
simultaneous shock in both volatility and correlation bring the probability of profit
down to approximately 53%.

Fig. 6 CGCI P&L
Distributions
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Fig. 7 MVDA5 P&L
Distributions

In the case of MVDA5, the baseline P&L distribution reveals significantly higher
levels of risk, with no prospect of profit on the 3-month horizon. The historical
scenario is more severe, displaying 85% probability of at least a 25% loss on the
initial investment. The volatility-shocked MVDA5 is heavier on the upper tail, but
the probability of a positive end-of-period return barely exceeds 1%.Overall, CGCI’s
WRC allocation scheme is characterised by a much more stable risk profile in all the
scenarios considered in this study.

5 Conclusion

We have proposed a framework for scenario-based risk management and have
described how it can be applied to assess the risk profile of diversified portfolios
with cryptoasset components. The joint evolution of the identified risk factors are
modelled in a realistic way and the analysed scenarios are severe, yet plausible. By
taking into account a variety of plausible future events related to volatility and cor-
relation levels, we demonstrate the superiority of diversified strategies, such as the
CGCI, as a means of mitigating risk. While this application focuses in generating
basic stress scenarios specifically for the case CGCI, it can be further modified to
include arbitrary combinations of risk factor shocks. Additionally, the presented pro-
cedure can potentially be used as a forward-looking portfolio optimisation approach.

Acknowledgements Imperial College of London gratefully acknowledges the support given by
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within this paper.
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Appendix A Plots

Fig. 8 Crypto-basket
log-returns

Fig. 9 Gold log-returns
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Fig. 10 ACF of
Crypto-basket returns

Fig. 11 ACF of Gold
returns

Fig. 12 ACF of
Crypto-basket returns
(absolute values)
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Fig. 13 ACF of Gold
returns (absolute values)

Fig. 14 Crypto-basket mean
excess plot Positive residuals

Fig. 15 Crypto-basket mean
excess plot Absolute of
negative residuals
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Fig. 16 Gold mean excess
plot Positive residuals

Fig. 17 Gold mean excess
plot Absolute of negative
residuals

Fig. 18 MVDA5 residuals
baseline CDF



62 A. Koutsouri et al.

Fig. 19 CGCI hypothetical
scenarios

Appendix B Table

Table 1 ARMA-GJR-GARCH, GPD and Copula Parameters and diagnostics
ARMA-GJR-GARCH Fitting

Crypto-
basket
Baseline

Crypto-
basket
Historical

Gold
Baseline

Gold Historical MDVA5
Baseline

MDVA5
Historical

Order
(ARMA)
(GJR-GARCH)

(4, 4)
(1, 1)

(4, 4)
(1, 1)

(4, 3)
(1, 1)

(4, 4)
(1, 1)

(4, 2)
(1, 1)

(4, 2)
(1, 1)

Parameters
(Eq. 2)

φ1:
−0.95408
φ2:
−0.35581
φ3:
−1.07815
φ4:
−0.99300
θ1: 1.03614
θ2: 0.37295
θ3: 1.11033
θ4: 1.06890
ω: 0.000007
α1: 0.02770
γ1:
−0.06146
β1: 1.00000

φ1: 0.05108
φ2: 0.45840
φ3: 0.06855
φ4:
−0.76304
θ1: 0.08024
θ2:
−0.42010
θ3:
−0.02407
θ4: 0.92655
ω: 0.00267
α1: 0.22360
γ1: 0.10915
β1: 0.13794

φ1:
−0.90692
φ2:
−1.00161
φ3:
−0.72425
φ4: 0.01181
θ1: 0.79031
θ2: 1.11737
θ3: 0.74846
ω: 0.000001
α1: 0.06469
γ1:
−0.13793
β1: 0.98006

φ1: 0.59656
φ2: 1.08368
φ3: −0.58776
φ4: −0.39986
θ1: −0.79959
θ2: −1.00687
θ3: 0.76978
θ4: 0.26998
ω: 0.00000
α1: 0.00000
γ1: −0.00200
β1: 1.00000

φ1:
−1.21805
φ2:
−1.19354
φ3:
−0.19727
φ4: 0.02250
θ1: 1.07132
θ2: 1.03795
ω: 0.000002
α1: 0.03245
γ1:
−0.06707
β1: 1.00000

φ1:
−1.93720
φ2:
−1.12456
φ3:
−0.12869
φ4:
−0.02543
θ1: 1.94084
θ2: 1.03890
ω: 0.000003
α1: 0.000001
γ1: 0.08400
β1: 0.94997

(continued)
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Table 1 (continued)
ARMA-GJR-GARCH Fitting

Crypto-
basket
Baseline

Crypto-
basket
Historical

Gold
Baseline

Gold Historical MDVA5
Baseline

MDVA5
Historical

AIC −3.6341 −2.7398 −7.2120 −7.4216 −4.0542 −3.2292

Residual Distribution
Shape
(KS Test p-value)

3.32702
(0.7003)

3.94689
(0.9604)

19.83051
(0.6673)

5.93231
(0.8674)

2.55280
(0.8684)

4.52857
(0.8335)

Generalised Pareto Distribution Fitting

Threshold u
(Upper)
(Lower)

1.10114
−0.60602

0.54891
−0.75895

0.60316
−1.15400

0.75454
−0.61262

0.63667
−0.51043

0.64902
−1.25717

Parameters
(Upper)
(Lower)

ξ: 0.27178
β: 0.39605
ξ: 0.01501
0.64541

ξ: −0.03047
β: 0.62530
ξ: 0.13459
β: 0.57712

ξ: −0.49452
β: 1.10766
ξ: −0.46581
β: 0.82030

ξ: 0.15642
β: 0.53995
ξ: −0.34770
β: 1.02221

ξ: 0.09272
β: 0.59313
ξ: 0.10358
β: 0.52568

ξ: −0.14684
β: 0.66304
ξ: 0.28828
β: 0.59477

LogLik
(Upper)
(Lower)

9.66944
30.58602

28.99699
28.07471

44.36422
8.06560

27.00540
40.44401

33.08554
203.4029

25.21121
27.66995

CGCI Copula Fitting

Gaussian
Copula

Loglik

t-Copula

Loglik

t-Copula Parameters

(ρ, ν)

Goodness-of-fit (p-value)

Baseline Scenario 0.41348 0.61102 (0.05917, 23.62447) 0.7737

Historical Scenario 0.24004 0.58172 (−0.03363, 16.62352) 0.3112
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Abstract We study selfish mining in Ethereum. The problem is combinatorially
more complex than in Bitcoin because of major differences in the reward system and
a different difficulty adjustment formula. Equivalent strategies in Bitcoin do have
different profitabilities in Ethereum. The attacker can either broadcast his fork one
block byone, or keep themsecret as long as possible and publish themall at once at the
end of an attack cycle. The first strategy is damaging for substantial hashrates, andwe
show that the second strategy is evenworse. This confirmswhatwe already proved for
Bitcoin: Selfish mining is most of all an attack on the difficulty adjustment formula.
We show that the current reward for signaling uncle blocks is a weak incentive for the
attacker to signal blocks. We compute the profitabilities of different strategies and
find out that for a large parameter space values, strategies that do not signal blocks
are the best ones. We compute closed-form formulas for the apparent hashrates for
these strategies and compare them.We use a direct combinatorial analysis with Dyck
words to find these closed-form formulas.
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1 Introduction

1.1 Selfish Mining Strategies in Ethereum

Research on selfishmining (in short SM) in Ethereum is quite recent.We canmention
as recent contributions [7] (numerical study) and [1].

The authors of [1] use a Markov chain model and compute the stationary proba-
bility. Then they study what they call the “absolute revenue” of the attacker which
corresponds to the apparent hashrate after a difficulty adjustment as explained in our
articles on blockwithholding attacks in the Bitcoin network (see [2–4]). Their the-
oretical analysis seems also confirmed by their numerical simulations. They do not
provide closed-form formulas (for example Formulas (8) and (9) in Sect. 3-E involve
double infinite sums). But more importantly, their study is limited to the following
strategy of the attacker:

(1) The attacker refers to all possible orphan blocks;
(2) When new blocks are validated by the honest miners, the attacker makes public

the part of his fork sharing the same height as the “honest” blockchain.

(See Algorithm 1 in [1], Lines 1 and 19 from Sect. 3-C)

We label this strategy as “Strategy 1” or SM1. The procedure of a Bitcoin selfish
miner to release his secret fork is irrelevant for the profitability of the classical selfish
mining attack.However, this is not so inEthereum. In particular, the precise algorithm
presented in [1] is not the most profitable as we will prove. An alternative strategy
for the attacker would be to keep secret all his fork until he is on the edge of being
caught-up by the honest miners. Then, and only at this critical moment, he would
release his complete fork and override the public blockchain. We label this second
strategy as “Strategy 2” or SM2. In Bitcoin, both strategies have the same effect since
only matters the number of blocks mined by the attacker and added to the official
blockchain. But in Ethereum, this is not so because of the different reward incentives
that gives rewards to “nephew” blocks who refer to “uncle” blocks. “Uncle” blocks
are orphan blocks with a parent in the official blockchain, and the descendants of
this parent in the official blockchain are its “nephew” blocks. Also uncle blocks get
rewards when referred by nephews.

1.2 Performance of Ethereum Selfish Mining Strategies

Tounderstandwhat the best strategy for the attacker is,we need an in-deep knowledge
of the nature of the selfish mining attack. In [2] we give a correct economic modeling
with a model of repetition game, and we consider the time element that is absent
from older Markov chain models. What is important for the attacker is to maximize
the number of validated blocks in the official blockchain per unit of time, which is
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different from the percentage of blocks he validates. With this correct modeling, it
becomes then clear that the attack is an exploit on Bitcoin’s difficulty adjustment
formula, that does include the orphan blocks. Then the attacker lowers artificially
the difficulty, at the expense of orphaned honest blocks, and succeeds to validate
more blocks per unit of time.

Point (2) in “Strategy 1” creates numerous competitions between the attacker’s
fork and the honest blockchain. This increases the production of orphan blocks that
becomes important for a substantial hashrate of the attacker. Signaling these orphan
blocks yields additional rewards to the attacker, but it goes against its main goal to
lower the difficulty. Indeed, the difficulty’s adjustment formula in Ethereum counts
for “uncles”, that are the orphan blocks directly attached to themain chain. Therefore,
increasing the number of uncles byPoint 2 has the following contradictory effects:On
one hand, the attacker’s revenue increases because of the new “inclusion rewards”,
but on the other hand, the difficulty is not lowered, so the attacker ends up mining
less official blocks per unit of time in Strategy 1 compared to Strategy 2.

On the contrary, if the attacker decides to avoid competitions with honest miners
as much as possible, he will earn less inclusion rewards (he can even decide to ignore
totally these rewards) but his speed of validation of blocks will increase. So, what is
the best strategy will depend very sensitively on the parameters of the reward system.

As explained in [3], the correct benchmark to compare profitabilities of two strate-
gies is the revenue ratio

� = E[R]
E[T ]

where R is the revenue of the miner per attack cycle and T is the duration of an attack
cycle. In Bitcoin, after a difficulty adjustment, this quantity becomes in the long run
proportional to

�̃ = E[Rs]
E[L]

where L (resp. Rs) is the number of new blocks (resp. new blocks mined by the
attacker) added to the official blockchain per attack cycle. The difficulty adjustment
is not continuous in Bitcoin as it is updated every 2016 official new blocks. With
the martingale tools introduced in [2], we computed how long it takes for the attack
to become profitable (this computation is not possible with the old Markov chain
model).

In Ethereum, the difficulty adjustment formula is different. The revenue ratio is
proportional to

�̃ = E[R]
E[L] + E[U ]

where U is the number of referred uncles and R is the total revenue of the attacker
in the attack cycle. Moreover, the revenue R per attack cycle has three different
contributions:
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(1) The revenue Rs coming from “static” blocks.
(2) The revenue Ru coming from “uncles” blocks.
(3) The revenue Rn coming from “nephews” blocks.

In Bitcoin’s revenue analysis only Rs is present. Therefore, for Ethereum we have

�̃ = E[R]
E[L] + E[U ] = E[Rs] + E[Ru] + E[Rn]

E[L] + E[U ]
The new terms on the numeratorE[Ru] andE[Rn] increase the revenue of the attacker
and are incentives for block withholding attacks. On the other hand, the new term
E[U ] in the denominator plays against the profitability of the attack and tends to
mitigate the attack. Only an exact computation of these terms can show which one
is the most profitable strategy. Another particularity of Ethereum is the continuous
adjustment of the difficulty. Thus a block-withholding attack is very quickly prof-
itable.

There are other selfish mining strategies in Ethereum. For instance, the attacker
can publish his secret blocks slowly, two by two, instead of one by one. In this article
we limit our study to Strategy 1 and Strategy 2. The main result are the closed-form
formulas for the apparent hashrates in Strategy 1 and 2. The main conclusion is that
the effect on the difficulty adjustment is prevalent, so that Strategy 2 outperforms
Strategy 1.

2 A Combinatorics Approach

In this section we present a general setup that is common for all strategies. We apply
our combinatorics approach to selfish mining as done previously for Bitcoin [4].
Dyck words and Catalan numbers are a powerful tool to compute the revenue ratio
of a selfish miner in Bitcoin. In [4] we proved the following Theorem and Corollary:

Theorem 2.1 Let L be the number of official new blocks added to the official
blockchain after an attack cycle. We have

P[L = 1] = p ,

P[L = 2] = pq + pq2 ,

and for n ≥ 3,
P[L = n] = pq2(pq)n−2Cn−2

where Cn = (2n)!
n!(n+1)! is the n-th Catalan number.
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Corollary 2.2 We have E[L] = 1 + p2q
p−q .

Wecan represent the combinatorics informationof an attack cycleω by the chrono-
logical sequence of blocks, S (for Selfish) and H (for Honest). The relation between
selfish mining and Dyck words is the following (see [4]),

Proposition 2.3 Let ω be an attack cycle starting with SS. Then, ω ends with H and
the intermediate sequence w defined by ω = SSwH is a Dyck word.

Definition 2.4 For n ≥ 0, we denote by Cn(x) = ∑n
k=0 Ckxk , the n-th partial sum

of the generating series of the Catalan number.

Example 2.5 We have C4(x) = 1 + x + 2x2 + 5x3 + 14x4.

Definition 2.6 We define π0 = π1 = 0 and for k ≥ 2,

πk = pq2(1k=2 + 1k≥2 · (pq)k−2Ck−2).

The following lemma results from Theorem2.1.

Lemma 2.7 Let ω be an attack cycle.

• For k ≥ 0, the probability that ω is won by the attacker and L(ω) = k is πk .
• For k ≥ 2, the probability that ω is won by the attacker and L(ω) ≤ k is pq2 +

pq2Ck−2(pq).

Proof We have either ω = SHS or ω starts with SS. The result then follows from
Lemma6.2 in the Appendix. �

For Ethereum, the “static” part Rs of the revenue of the selfish miner coming from
rewards for validated blocks is the same as for Bitcoin. However, we need to add the
new terms Rs and Rn coming from uncle and nephew rewards.

Definition 2.8 If ω is an attack cycle, we denote by U (ω) (resp. Us(ω), Uh(ω)) the
random variable counting the number of uncles created during the cycle ω which are
referred by nephew blocks (resp. nephew blocks mined by the selfish miner, nephew
blocks mined by the honest miners) in the cycle ω or in a later attack cycle.

We denote by V (ω) the random variable counting the number of uncles created
during the cycle ω and are referred by nephew blocks (honest or not) in an attack
cycle strictly after ω.
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We take from [1] the notation Ku for the uncles reward function, and we denote
by π the inclusion reward (see the glossary at the end).

For a general blockwithholding strategy, the random variables fromDefinition2.8
do not contain all the information for the computation of the attacker’s revenue. It
depends not only on the number of uncles mined by the attacker but also on their
distance d to its corresponding nephews.

However, for a miner following a selfish mining strategy, the part of his revenue
coming from uncle rewards are easy to compute, as shown in the next Proposition,
because only the case d = 1 is possible. This observation was already made in [1].

Proposition 2.9 Let Ru(ω) be the total amount of uncle rewards of the selfish miner
during an attack cycle ω. We have:

E[Ru] = p2q(1 − γ)Ku(1) .

Currently on Ethereum we have Ku(1) = 7
8b.

Proof Let ω be an attack cycle. If ω = SHH with a second honest block mined on
top of another honest block after a competition, the attacker has an uncle which is
referred by the second honest block of the honest miners in the cycle ω. Otherwise,
if ω �= SHH then the attacker has no uncle in the cycle ω (the only uncle blocks are
those mined by the honest miners). �

The apparent hashrate is the long term apparent hashrate of the attacker after the
manipulation of the difficulty by the attacker.

Definition 2.10 We denote by q̃ B , resp. q̃ E , the long term apparent hashrate of the
selfish miner in Bitcoin, resp. Ethereum, defined by

q̃B = E[Rs]
E[L]

q̃E = E[Rs] + E[Ru] + E[Rn]
E[L] + E[U ]

For Bitcoin we have the following formula (see [6] and [2]),

q̃ B = [(p − q)(1 + pq) + pq]q − (p − q)p2q(1 − γ)

pq2 + p − q

For Ethereum only E[U ] and E[Us] are relevant for the computation of the appar-
ent hashrate of the selfish miner:
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Theorem 2.11 We have

q̃E = q̃B · E[L]
E[L] + E[U ] + p2q(1 − γ)Ku(1)

E[L] + E[U ] + E[Us]
E[L] + E[U ] π .

Currently on Ethereum we have Ku(1) = 7
8 and π = 1

32 .

Proof Using Proposition2.9, we have:

q̃ E = E[Rs] + E[Ru] + E[Rn]
E[L] + E[U ]

= E[Rs]
E[L] · E[L]

E[L] + E[U ] + E[Ru]
E[L] + E[U ] + E[Us]

E[L] + E[U ] π

= q̃B · E[L]
E[L] + E[U ] + p2q(1 − γ)Ku(1)

E[L] + E[U ] + E[Us]
E[L] + E[U ] π �

In next sectionswe computeE[Us] andE[U ] for different selfishmining strategies.

3 Strategy 1: Maximum Belligerence Signalling All Uncles

We consider here the strategy described in [1] where the attacker engages in compe-
tition with the honest miners as often as possible, and signals all possible “uncles”.

3.1 General Definitions and Basic Results

Definition 3.1 The relative height of an orphan block b validated by the honest
miners is the difference between the height of the secret fork of the attacker at the
time of creation of b and the height of b. We denote it h(b).

Example 3.2 For ω = SSSHSHSHH, the first three “honest” blocks have relative
height equal to 2 and the last “honest” block has a relative height equal to 1.

Proposition 3.3 Let b be an uncle block mined by an honest miner and signaled by
a nephew block which is at a distance d of b. Then, we have h(b) < d.

Proof Let b′ be the last block mined by the selfish miner at the date of creation
of b. Notice that h(b) is also the number of blocks between b’s parent and b′.
Thus the distance between b and a possible nephew is necessarily strictly greater
than h(b). �
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Note 3.4 Let n ≥ 0 and ω = SSw be an attack cycle with w = w1 . . . w2n+1,
wi ∈ {S, H} and w2n+1 = H . Then, w can be identified with a simple finite path
(Xi )0�i�2n+1 starting from 0, satisfying: ∀i � 2n + 1, Xi = Xi−1 + 1 (resp. Xi =
Xi−1 − 1) if wi = S (resp. wi = H ) and ending at X2n+1 = −1 (see the Appendix).
The index i indicates the (i + 2)-th block validated during ω. It has been mined by
the attacker (resp. honest miners) if Xi = Xi−1 + 1 (resp. Xi = Xi−1 − 1).

Proposition 3.5 Let ω = SSw an attack cycle starting with two S with w = w1 . . .

w2n+1, wi ∈ {S, H} and w2n+1 = H. We denote by X : [0, 2n + 1] −→ [−1,+∞]
the path associated with w as in Note3.4. For i � 2n + 1, let bi denote the i-th
validated block in w. Then we have:

Xi < Xi−1 =⇒ h(bi ) = Xi + 2

Proof By induction on i , we show that Xi + 2 represents the advance of the fork
created by the attacker over the official blockchain at the time of creation of the i-th
block inw. Now, if Xi < Xi−1 then by Note3.4, bi is a block validated by the honest
miners. So h(bi ) is well defined, and we get the result using Definition3.1. �

Proposition 3.6 Let ω = SSw be an attack cycle starting with two S and let bi be the
i-th block validated in w. We denote by X the associated path according to Note3.4.
If bi is an uncle then we have:

(1) Xi < n1 − 2
(2) Xi < Xi−1

Proof This follows from Propositions3.3 and 3.5. �

Definition 3.7 If ω = SSw is an attack cycle starting with two blocks S, then we
denote by H(ω) the random variable counting the number of blocks in the cycle ω
fulfilling (1) and (2) from Proposition 3.6.

If w is an attack cycle, the condition ω = SS . . . means that ω starts with two S.

Proposition 3.8 We have:

E[H(ω)|ω = SS . . .] = p

p − q

(

1 −
(
q

p

)n1−1
)

Proof See Lemma6.1 in the Appendix. �
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3.2 Expected Number of Referred Uncles by Attack Cycle

We can be more precise in Proposition3.6.

Lemma 3.9 Let ω = SSw and X be the associated path from Note 3.4. We denote
by bi the i-th block inw and suppose that conditions (1) and (2) from Proposition3.6
are satisfied. The probability for bi to be an uncle is equal to γ, except when bi is
the first block validated by the honest miners, then this probability is 1.

Example 3.10 Suppose that n1 = 4 and letω = SSwwithw = SHSSSHHHH. The
blocks validated by the honest miners correspond to an index i ∈ E = {2, 6, 7, 8, 9}.
We have X6 = 2 and Xi < 2 for i ∈ E and i �= 6. The first block validated by the
honest miners is an uncle with probability 1. The second block validated by the
honest miners is a stale block which cannot be referred by a nephew block. All other
blocks validated by the honest miners in ω can be uncles with probability γ. Note
also that the last three blocks of the honest miners are not referred in ω and will be
referred by the first future official block of the next attack cycle.

Using these observations, we can now compute E[U ].

Proposition 3.11 We have:

E[U ] = q + q3γ

p − q
− p3

p − q

(
q

p

)n1+1

γ − qn1+1(1 − γ)

Proof If ω = H , then U (ω) = 0. If ω ∈ {SHS,SHH}, then, U = 1. Otherwise, ω
starts with two consecutive S. Then, by Proposition3.8 and Lemma3.9, we have,

E[U ] = (0 · p) + 1 · (pq2 + p2q) + (E[H(ω)|ω = SS . . .]γ + (1 − γ)(p + pq + · · · + pqn1−2)) · q2

The last term comes from the following fact: When the first honest block present in
ω corresponds to an index i satisfying Xi < n1 + 2, then its contribution to E[U ] is
underestimated by E[H(ω)|ω = SS . . .]γ because it has probability 1 to be an uncle.
This only occurs when ω starts with SS...SH with the first k blocks validated by the
selfish miner with k � n1, from where we get the last term. In conclusion we have:

E[U ] = pq +
(

p

p − q

(

1 −
(
q

p

)n1−1
)

γ

)

· q2 + (1 − γ)(1 − qn1−1) · q2

and we get the result by rearranging this last equation. �
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Note 3.12 In particular, we obtain lim
n1→∞E[U ] = q + q3γ

p−q . This limit can also be

derived by observing that if n1 = ∞, then E[U |L = n] = 1 + γ(n − 2) and using
Theorem2.1.

Now, we compute the expected number of uncles per attack cycle which are
referred by nephews (honest or not) belonging to the next attack cycle.

Lemma 3.13 The probability for an attack cycle to end with exactly k consecutive
appearances of “H” with k ≥ 1, conditional that it starts with SS, is pqk−1.

Proof Let k ≥ 1. An attack cycle ω ends with exactly k consecutive appearances of
“H” if and only if ω = SSwH where w is a Dyck word that ends with exactly k − 1
“H”. The result then follows from Appendix, Lemma6.4. �

Proposition 3.14 We have:

E[V ] = q2

p
(1 − qn1−1)γ + (1 − γ)pq2 1 − (pq)n1−1

1 − pq

Proof If an attack cycle ω does not start with two S, then V (ω) = 0. If ω starts with
two “S” and ends with exactly k “H” in a row (k ≥ 1), then only the last n1 − 1 blocks
can be uncles signaled by future blocks. This happens with probability γ for each
block H in this sequence, except for the first block validated by the honest miners if
it belongs to this sequence. In this last case, ω = SS . . . SH . . .HH with at most n1
letters S and n1 − 1 letters “H”. So, by Lemma3.13, we have

E[V ] = q2
∑

k≥1

inf(k, n1 − 1)pqk−1γ + (1 − γ)q
n1−1∑

k=1

(pq)k

�

3.3 Expected Revenue of the Selfish Miner from Inclusion
Rewards

We compute now E[Uh].

Proposition 3.15 We have:

E[Uh] = p2q + (p + (1 − γ)p2q)

(
q2

p
(1 − qn1−1)γ + (1 − γ)pq2 1 − (pq)n1−1

1 − pq

)
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Proof We have Uh(ω) = U (1)
h (ω) +U (2)

h (ω) where U (1)
h (ω) (resp. U (2)

h (ω)) counts
the number of uncles referred by honest nephews only present in ω (resp. in the next
attack cycle after ω). It is clear that U (1)

h (SHH) = 1 and U (1)
h (ω) = 0 if ω �= SHH.

So,
E[U (1)

h ] = p2q (1)

Moreover, given ω, the probability that H is the next official block after ω is p +
(1 − γ)p2q. This happens if and only if the next attack cycle is either H or SHH. If
this event occurs, then the first honest block in the next attack cycle will signal the
previous uncles created in ω. Therefore, we have

E[U (2)
h ] = (p + (1 − γ)p2q) · E[V ] (2)

Hence, we get the result by (1), (2) and Proposition3.14. �

Corollary 3.16 We have

E[Us ] =q + q3γ

p − q
− pq2

p − q

(
q

p

)n1−1

γ − qn1+1(1 − γ)

−
[

p2q + (p + (1 − γ)p2q)

(
q2

p
(1 − qn1−1)γ + (1 − γ)pq2

1 − (pq)n1−1

1 − pq

)]

Proof With the same notations as above, we have: U (ω) = Us(ω) +Uh(ω) and we
use Propositions3.11 and3.15. �

3.4 Apparent Hashrate of Strategy 1

Using Theorem2.11, Proposition3.11 and Corollary3.16 we can plot the region of
(q, γ) ∈ [0, 0.5] × [0, 1] of dominance of the selfish mining Strategy 1 (SM1) over
the honest strategy. This corresponds to q̃ E > q. We obtain Fig. 1.

We want now to compute the expected revenue of the honest miners by attack
cycle. In order to do that, we compute first the expected distance between uncles and
nephews by attack cycle.

3.5 Expected Distance Between Uncles and Nephews by
Attack Cycle

If b is an uncle, we denote by δ(b) the distance between b and its nephew. We start
by a remark.
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Fig. 1 Comparing HM and
SM1 strategies

HM SM1

Remark 3.17 Let b be an orphan block validated by the honest miners as in Defi-
nition3.1. If b is an uncle then δ(b) = h(b) + 1.

Definition 3.18 If ω = SSw is an attack cycle starting with two blocks S, we set

D(ω) =
∑

b

(h(b) + 1)

where the sum is taken over all honest blocks b in ω fulfilling Conditions (1) and (2)
from Proposition3.6.

Proposition 3.19 We have:

E[D(ω)|ω = SS . . .] = p

(p − q)2

(

2p − q − (
p + n1(p − q)

) ·
(
q

p

)n1−1
)

Proof Let ω = SSw be an attack cycle starting with two S with w = w1 . . . wν and
let X be the associated path according to Note3.4. In particular, we have Xν = −1
and Xi ≥ 0 for i < ν. By Proposition 3.5 and Lemma 6.1 in the Appendix, we have:

E[D(ω)|ω = SS . . .] = E

⎡

⎣
ν∑

i=1

(
Xi + 3

) · 1(Xi<n1−2)∧(Xi<Xi−1)

⎤

⎦

= E

⎡

⎣
ν∑

i=1

Xi · 1(Xi<n1−2)∧(Xi<Xi−1)

⎤

⎦ + 3E

⎡

⎣
ν∑

i=1

·1(Xi<n1−2)∧(Xi<Xi−1)

⎤

⎦

= p

(p − q)2

(

2q − p − (
q + (n1 − 2)(p − q)

) ·
(
q

p

)n1−1
)

+ 3p

p − q

(

1 −
(
q

p

)n1−1
)
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= p

(p − q)2

(

2q − p + 3(p − q) − (
q − 2(p − q) + n1

(
p − q

) + 3
(
p − q

)) ·
(
q

p

)n1−1
)

Hence, we get the result. �

Definition 3.20 Let ω be an attack cycle. We set

�(ω) =
∑

b

δ(b)

The last sum being taken over all referred uncles in ω.

Proposition 3.21 We have

E[�] =pq + pq2γ

(p − q)2

(

2p − q − (
p + n1(p − q)

) · ( q

p

)n1−1
)

+ (1 − γ)q

p

(
q(1 + p) − (1 + n1 p)q

n1
)

Proof We proceed as in the proof of Proposition 3.11. If ω = H , then �(ω) = 0.
If ω ∈ {SHS,SHH}, then, �(ω) = 1. Otherwise, ω starts with two consecutive S.
Then, using Lemma 3.9, we get

E[�] = pq2 + p2q + (E[D(ω)|ω = SS . . .]γ + (1 − γ)(2p + 3pq + · · · + n1 pq
n1−2)) · q2

The last term comes from the following fact: when the first honest block present in
ω corresponds to an index i satisfying Xi < n1 + 2, then its contribution to E[�] is
underestimated by E[D(ω)|ω = SS . . .]γ because it has probability 1 to be an uncle.
This only occurs when ω starts with SS...SH with the first k blocks validated by the
selfish miner with k � n1, from where we get the last term. We have:

2q + 3q2 + · · · + n1q
n1−1 = −1 +

(
qn1+1 − 1

q − 1

)′
= −1 +

(
qn1+1

q − 1

)′
−

(
1

q − 1

)′

= −1 + (n1 + 1)qn1

q − 1
− qn1+1

(q − 1)2
+ 1

(q − 1)2

= −1 + 1

p2
+ qn1

(q − 1)2
((n1 + 1)(q − 1) − q)

= 1 − p2

p2
− qn1

p2
(q + (n1 + 1)p)

= q(1 + p)

p2
− qn1

p2
(1 + n1 p)
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So,
(
2p + 3pq + · · · + n1 pq

n1−2) q2 = q

p

(
q(1 + p) − (

1 + n1 p
)
qn1

)
(3)

Hence we get the result using Proposition 3.19. �

3.6 Deflation

With the new difficulty adjustment formula, the duration time of an attack cycle in
Ethereum is (E[L] + E[U ])τ1 where τ1 is the mean interblock time in Ethereum
(which is currently 15 seconds). The number of coins created in an attack cycle is(
E[L] + 7

8E[U ] − 1
8E[�] + E[U ]π)

b where b is the coinbase in Ethereum. Thus,
on average, there is a monetary creation of

E[L] + (
7
8 + π

)
E[U ] − E[�]

8

E[L] + E[U ] b

for every inter-block time τ1, whereas without selfish miner, it is only b on average.
So, selfish mining leads to a deflation index

ι =
(
1
8 − π

)
E[U ] + E[�]

8

E[L] + E[U ] (4)

Currently we have π = 1
32 , thus ι > 0.

3.7 Apparent Hashrate of the Honest Miners

Let p̃ be the apparent hashrate of the honest miners in presence of a selfish miner.
We have

p̃ + q̃ = 1 − ι (5)

where q̃ is the apparent hashrate of the selfish miner. We observe numerically that
q̃ > q − ι for any values of (q, γ). So, even if the attack is not profitable for the
selfish miner (case q̃ < q) we have p̃ < p which means that the honest miners are
impacted by the presence of a selfish miner in the network.
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4 Strategy 2A: Brutal Fork Signaling All Uncles

We study now another Selfish Mining Strategy (Strategy 2 or SM2): Brutal fork. In
this case, the attacker keeps secret his blocks as long as possible and only releases
its fork, all at once, at the end of the attack cycle. We call this strategy “brutal fork”
because this leads, periodically, to deep reorganizations of the official blockchain.
Strategy 2A (or SM2A) corresponds to the case when also the attacker refers all
possible uncles.

Proposition 4.1 We have E[U ] = q − qn1+1.

Proof We have U = 0 if and only if the attack cycle is H or if it starts with n1 + 1
blocks of type S. Otherwise, we have U = 1. So,

E[U ] = P[U > 0] = 1 − (p + qn1+1) = q − qn1+1

�

We compute now E[V ]

Proposition 4.2 We have E[V ] = pq2 · 1−(pq)n1−1

1−pq .

Proof We have V = 1 if and only if the attack cycle ω is SS..SH..H with 2 ≤ k ≤ n1
S. In that case, the first H is an uncle signaled by the first future official block in the
attack cycle after ω. Otherwise, V = 0. So, E[V ] = pq2 + · · · + pn1−1qn1 , and we
get the result. �

Proposition 4.3 We have E[Uh] = p2q + (
p + (1 − γ)p2q

)
pq2 · 1−(pq)n1−1

1−pq .

Proof The proof is almost identical as the proof of Proposition 3.15. If U (1)
h (ω)

(resp. U (2)
h (ω)) counts for the number of uncles referred by honest nephews only

present in ω (resp. in the attack cycle just after ω), then we have E[U (1)
h ] = p2q,

E[U (2)
h ] = (

p + (1 − γ)p2q
) · E[V ] and Uh = U (1)

h +U (2)
h . The only difference is

the value of E[V ] which this time is given by Proposition 4.2, and we get the result.
�

Corollary 4.4 We have

E[Us ] = E[U ] − E[Uh] = q − qn1+1 −
(

p2q +
(
p + (1 − γ)p2q

)
pq2 · 1 − (pq)n1−1

1 − pq

)
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Fig. 2 Comparing HM and
SM2A strategies

HM SM2A

Note 4.5 When γ = 0, the two strategies 1 and 2A are identical: in both cases, the
honest miners always build blocks on top of honest blocks. So, E[U ], E[Uh] and
E[Us] must coincide for γ = 0. We can check in the different formulas that this is
the case. See Propositions 3.11, 3.15,4.1, 4.3 and Corollaries 3.16, 4.4.

4.1 Apparent Hashrate of Strategy 2A

We use again Theorem 2.11 and we plot in parameter space in Fig. 2 the region
of (q, γ) ∈ [0, 0.5] × [0, 1] comparing Selfish Mining Strategy 2A to the honest
strategy.

We observe that if γ = 0 then we have SM2A is superior to honest mining when
q > 28.65%. Also we have for all values of q and γ that SM2A is superior to SM1.
Therefore it is never profitable for the attacker to engage in competitions with the
honest miners.

4.2 Apparent Hashrate of the Honest Miners

We compute first the expected distance between an uncle and its nephew. We keep
the same notation for � as in Definition 3.20.
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Fig. 3 Comparing p̃ and p:
The honest miners loose
money even when the attack
is not profitable for the
selfish miner except for a
tiny region around (0, 0)
(case SM2A)

Proposition 4.6 We have E[�] = q
p

(
q(1 + p) − (

1 + n1 p
)
qn1

)

Proof If an attack cycle ω starts with S...SH with k S, k ≤ n1, then there is exactly
one uncle in ω and its distance to its nephew is k. In any other cases, there is no uncle
in ω. Therefore, E[�] = ∑n1

k=1 kpq
k Hence we get the result by (3). �

The apparent hashrate p̃ of the honest miners is p̃ = 1 − q̃ − ιwith ι given by (4).
Numerically, we observe that we have always p̃ < p except in a tiny region when q
and γ is small (q < 6% and γ < 22%).

5 Strategy 2B: Brutal Fork Without Signaling Uncles

In this strategy, the attacker signals no uncles in order to maximize the impact on
the difficulty adjustment formula. In that case we haveUs = 0. In our analysis of the
profitability of the strategy, we need to consider another important rule of Ethereum’s
protocol: a nephew can only signal at most two uncles. Instead of computing E[U ],
it is simpler to compute E[U ′] where U ′(ω) is defined as the number of signaled
uncles with nephews in ω. We have,

E[U ] = E[U ′] (6)

Since the attacker does not signal uncles, we have U ′(ω) = 0 if ω /∈ {H,SHH}.
To ease notations, we set U ′(H) for U ′({H}).
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Lemma 5.1 We have:

P[U ′(H) = 1] = ∑n1−2
i=2

(
1 − pq2 − pq2Cn1−2−i (pq)

)
πi + πn1−1 + πn1

P[U ′(H) = 2] = ∑
i+ j≤n1

πiπ j

P[U ′(H) ≥ 3] = 0

Proof We have U ′(H) = 1 if and only if the two last attack cycles before H are in
the following order from the oldest to the most recent one: ω′ and ω such that:

(1) ω won by the attacker with L(ω) � n1.
(2) ω′ won by the honest miners or by the attacker but with L(ω′) > n1 − L(ω).

Note that if L(ω) � n1 − 1 then (2) is automatically satisfied. So,

P[U ′(H) = 1] =
n1−2∑

i=2

(
1 − pq2 − pq2Cn1−2−i (pq)

)
πi + πn1−1 + πn1

In the sameway, we haveU ′(H) = 2 if and only if the two last attack cycles before H
areω′ andω such thatω′ andω are bothwon by the attacker with L(ω) + L(ω′) ≤ n1.
Indeed, a block can only refer at most two uncles. Hence, we get the result. �

Example 5.2 For n1 = 6, we have using Example 2.5:

P[U ′(H) = 1] =π5 + π6 +
∑

i�4

(1 − pq2 − pq2C4−i (pq))πi

= pq2
(
14p4q4 + p3(5 − 9q)q3 + 2p2(1 − 2q)q2 + p

(
q − 4q2

)
+ 2

)

P[U ′(H) = 2] =π22 + 2π2π3 + 2π2π4 + π33

= p2q4
(
5p2q2 + 2pq + 4

)

P[U ′(H) ≥ 3] = 0

Definition 5.3 We define Pn1(p, q) = E[U ′(H)].

Example 5.4 When n1 = 6, we have by Example 5.2:

P6(p, q) = pq2
(
14p4q4 + p3(q + 5)q3 + 2p2q2 + p(4q + 1)q + 2

)

Lemma 5.5 We have

E[U ′(ω)|ω = SHH] = (Pn1(p, q) + 1) · (1 − γ) + (pq2 + pq2Cn1−3(pq) + 1) · γ
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Proof Suppose that ω =SHH. We have two cases: The second honest block can be
built on top of a block validated by the selfish miner or not. If the first official block
of ω is honest, then it signals any uncle which is at distance less or equal than n1,
like in the previous situation. Moreover, the first block mined by the selfish miner is
an uncle signaled by the second block mined by the honest miners. This gives the
first term of the right hand side. If the first official block of ω is a block mined by the
attacker, then the first block validated by the honest miners is an uncle signaled by
the second block mined by the honest miners. This last block will also signal another
uncle which is at distance less than n1 − 1 of the first official block of ω. There is
such an uncle if and only if the attack cycle ω′ before ω is an attack cycle won by
the attacker with L(ω′) ≤ n1 − 1. This gives the second term of the right hand side.
Hence, we get the result. �

Theorem 5.6 We have

E[U ] = (p + (1 − γ)p2q)Pn1(p, q) + γ p2q
(
pq2 + pq2Cn1−3(pq)

) + p2q

Proof We have E[U ] = E[U ′] and

E[U ′] = E[U ′(ω)|ω = H ]P[ω = H ] + E[U ′(ω)|ω = SHH]P[ω = SHH]
= Pn1 (p, q)p + (Pn1 (p, q) + 1) · (1 − γ)p2q + (pq2 + pq2Cn1−3(pq) + 1) · γ p2q

�

5.1 Apparent Hashrate of Strategy 2B

The computation of E[U ] is a polynomial expression in p and q that can be carried
out with the help of a computer algebra system. We plot in parameter space in Fig. 3
the region of (q, γ) ∈ [0, 0.5] × [0, 1] comparing Selfish Mining Strategies 2A and
2B, and honest mining. We also compare SM1, SM2A and SM2B in Fig. 4.

We observe that if γ = 0 then we have SM2B is superior to honest mining when
q > 28.80%. Also, for q > 30.13% we have that SM2B is even better than SM2A
(whatever γ is). Thus, in this case, the attacker does not even need to bother to signal
blocks (Figs. 5).
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Fig. 4 Comparing the
strategies HM, SM2A and
SM2B

HM SM2B

SM2A

Fig. 5 Comparing the
strategies SM1 (black),
SM2A (blue) and SM2B
(red)

5.2 Apparent Hashrate of the Honest Miners

Definition 5.7 Ifω is an attack cycle, we denote by�′(ω) the average number of the
distance between a nephew belonging to ω and an uncle which does not necessarily
belong to ω.
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In a similar way as before, we prove:

Lemma 5.8 We have

E[�′(ω)|ω = H ] =
∑

|i|�n1

⎛

⎝
∑

j

j · i j
⎞

⎠
(
1 − pq2 − pq2Cn1−2−|i|(pq)

) ∏

j

πi j

Definition 5.9 We define Qn1(p, q) = E[�′(ω)|ω = H ]
The same computations as in the previous section leads to

Q5(p, q) = pq2
(
25p3q3 + 20p2q3 + 8p2q2 + 16pq2 + 3pq + 4

)

Q6(p, q) = pq2
(
84p4q4 + 54p3q4 + 25p3q3 + 96p2q4 + 20p2q3 + 8p2q2 + 16pq2 + 3pq + 4

)

This enables us to compute E[�′] using the following result with n1 = 6.

E[�′] = (p + (1 − γ)p2q)Qn1(p, q) + γ p2qQn1−1(p, q) + p2q .

Finally, we note that E[�] = E[�′]. From here, we get the apparent hashrate of
the honest miners using (4) and (5). We observe numerically that we have always
p̃ < p.

6 Conclusions

Wehave given closed-form formulas for the long term profitability of different selfish
mining strategies in the Ethereum network. This is combinatorially more complex
than in Bitcoin network which has a simpler reward system. Precisely, the particular
reward system that incentives signaling blocks is an effective counter-measure to
Selfish mining but only when the count of uncle blocks are incorporated into the
difficulty adjustment formula (this is the case for the current implementation of the
difficulty adjustment formula). This analysis provides a good illustration of the fact
that selfish mining is an attack on the difficulty adjustment formula. We study, for
the first time, selfish mining strategies that do not signal any blocks. We prove that
they are the most profitable ones in the long run. It may appear counter-intuitive that
refusing the signaling fees is the most profitable strategy with the current reward
parameters when q is larger than 30%. But this is explained again because selfish
mining is an attack on the difficulty adjustment formula.
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Appendix

6.1 Random Walk

We compute the expected numbers of descents in a biased random walk conditional
to be bounded by a fixed bound.

Lemma 6.1 Let (Xk) be a biased randomwalk starting from X0 = 0withP[Xk+1 =
Xk + 1] = q and P[Xk+1 = Xk − 1] = p for k ∈ N, with p + q = 1 and q < p. Let
ν(X) be the stopping time defined by ν(X) = inf{i ≥ 0; Xi = −1}, and for n ≥ 0,
let

un(X) =
ν∑

i=1

1(Xi<n)∧(Xi<Xi−1)

vn(X) =
ν∑

i=1

Xi · 1(Xi<n)∧(Xi<Xi−1)

Then we have

un = E[un(X)] = p

p − q

(

1 −
(
q

p

)n+1
)

(7)

vn = E[vn(X)] = p

(p − q)2

(

2q − p − (
q + n(p − q)

) ·
(
q

p

)n+1
)

(8)

Proof We have u0 = 1 (resp. v0 = −1). If X1 = −1, then we have un(X) = 1 (resp.
vn(X) = −1). If X1 = 1, then

un(X) =
ν ′

∑

i=1

1(X ′
i<n−1)∧(X ′

i<X ′
i−1)

+
ν

′′
∑

i=1

1(X
′′
i <n)∧(X

′′
i <X

′′
i−1)

=un−1(X
′) + un(X

′′
)

with

X ′
i =Xi+1 − 1

ν ′ = inf{i > 0; X ′
i = −1}

X
′′
i =X ′

i+ν ′ − X ′
ν ′

ν
′′ = inf{i > 0; X ′′

i = −1}
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By the Markov property, X ′ and X
′′
are two independent simple biased random walk

with a probability p (resp. q) to move to the left (resp. right). So, taking expectations,
we get:

un = p · 1 + q · (un−1 + un)

which is equivalent to

un − p

p − q
=

(
q

p

) (

un−1 − p

p − q

)

So we get (7) by induction on n. In the same way, we have:

vn(X) =
ν ′

∑

i=1

(X ′
i + 1) · 1(X ′

i<n−1)∧(X ′
i<X ′

i−1)
+

ν"∑

i=1

X
′′
i · 1(X

′′
i <n)∧(X

′′
i <X

′′
i−1)

= un−1(X
′) + vn−1(X

′) + vn(X
′′
)

Taking expectations again, we get

vn = p · (−1) + q · (un−1 + vn−1 + vn) (9)

Set cn =
(

p
q

)n
vn . Then, (9) leads to

cn = cn−1 +
(
p

q

)n−1

un−1 −
(
p

q

)n

= cn−1 +
(
2q − p

p − q

)

·
(
p

q

)n

− q

p − q

So, by induction, we get

cn = c0 +
(
2q − p

p − q

)

·
(
p

q

)

·
( p
q

)n − 1
( p
q

) − 1
− nq

p − q

After rearranging terms, we get (8). �

6.2 Dyck Words

Let D be the space of Dyck words based on the alphabet {S, H}. If w = w1 . . . w2k

with k ∈ N, then we define |w| = k. We have proved in [4] that we can endow D
with a probability measure P̄ given by P̄[w] = p(pq)|w| for w ∈ D. Note that P̄[w]
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can be interpreted as the probability that a simple biased random walk X starting
from 0 and stopping at −1 follows exactly the path given by w i.e., Xi = Xi−1 + 1
(resp. Xi = Xi−1 − 1) if wi = S (resp. wi = H ) for i � 2|w| and X2|w|+1 = −1.

Lemma 6.2 Let n ≥ 0 and Dn = {w; |w| � n}. Then, P̄[Dn] = pCn(pq) where
Cn(x) is the n-th partial sum of the generating series C(x) of the Catalan num-
bers.

Proof We have

P̄[Dn] =
∑

w∈Dn

p(pq)|w| = p
n∑

k=0

∑

|w|=k

(pq)k = p
n∑

k=0

Ck(pq)k = pCn(pq)

�

We can make more precise Proposition 2.3.

Proposition 6.3 Let ω = SSwH be an attack cycle starting with SS. Then, w ∈ D
and P[ω] = q2

P̄[w]

Lemma 6.4 The probability that a Dyck word ends with the subsequence SHH..H
with n letters H at the end is pqn.

Proof Consider the “reversal” map σ : D −→ D given by

w = w1 . . . w2|w| �−→ σ(w) = w̃ = w̃2|w| . . . w̃1

with w̃i = S (resp. H ) if wi = H (resp. S). Then σ is one to one and preserves P̄
i.e., for w ∈ D, we have P̄[σ(w)] = P̄[w]. So, the probability that a Dyck word ends
exactly with n letter(s) H is the same as the probability that a Dyck word starts with
n letter(s) S and then is followed by a letter H. Thus this probability is pqn . �

For w ∈ D, we define f (w) = inf{i ≥ 0;wi = H}.
Lemma 6.5 Let n ≥ 0 and E = {w ∈ D; f (w) � inf{|w|, n}}. Then we have

P̄[E] = (1 − qn) − p(1 − (pq)n)

1 − pq

Proof Let w ∈ D. To have f (w) � |w| means that at least one H is followed by an
S i.e., w is not of the form SS...SHH...H. For all integer k � n, we have
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�w;( f (w)=k)∧( f (w)�|w|)(pq)|w| = pqk−1 ·
k−2∑

j=0

qp j

So, if we consider a biased randomwalk starting from 0 with a probability p to move
to the left (resp. right) then both terms represent the probability of the following event:
We have k − 1 first step(s) to the right, then j + 1 steps to the left with 0 � j � k − 2
and then at least one step to the right before reaching 0. So, we have

P̄[E] =
n∑

k=1

pqk−1 ·
k−2∑

j=0

qp j

= p
n∑

k=1

qk−1 · (1 − pk−1)

= p
n∑

k=1

qk−1 − p
n∑

k=1

(pq)k−1

= (1 − qn) − p(1 − (pq)n)

1 − pq
�

6.3 Glossary

6.3.1 Revenue Ratio and Apparent Hashrate

The revenue ratio �̃ of a miner following a strategy with repetitions of attack cycles
like selfish mining is given by �̃ = E[R]

E[T ] where R (resp. T ) is the revenue of the
miner after an attack cycle (resp. the duration time of an attack cycle). The apparent
hashrate q̃ is defined by q̃ = �̃ τ

b where b (resp. τ ) is the coinbase (resp. interblock
time).

6.3.2 Terminology

Ethereum has a special terminology that we summarize here.

Uncle Orphan block whose parent belongs to the official blockchain
Nephew Regular block that refers to an “uncle” which is at a distance less than n1
Distance Number of official blocks between a nephew N and a parent’s uncle U
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6.3.3 Mining Reward

If an uncleU is referred by a nephewNwhich is at a distance d, thenU earns an “uncle
reward” which is worth Ku(d)b and N gets an additional reward of Kn(d)b, where
b is the coinbase. Also, a nephew can refer at most two uncles. Today, on Ethereum,
we have b = 2 ETH, Ku(d) = 8−d

8 · 1d�n1 with n1 = 6 and Kn(d) = π = 1
32 .

Uncle reward Reward granted to an uncle block referred by a nephew
inclusion reward Additional reward granted to a nephew that refers an uncle

References

1. Feng, C. & Niu, J. (2019). Selfish mining in ethereum, arXiv:1901.04620.
2. Grunspan, C. & Pérez-Marco, R. (2018).On profitability of selfish mining, arXiv:1805.08281v2.
3. Grunspan, C. & Pérez-Marco, R. (2018). On profitability of trailing mining, arXiv:1811.09322.
4. Grunspan, C. & Pérez-Marco, R. (2019). Bitcoin selfish mining and Dyck words,

arXiv:1902.01513.
5. Grunspan,C.&Pérez-Marco,R. (2019). Selfishmining andDyckwords inBitcoin andEthereum

networks. In Tokenomics Conference Proceedings, arXiv:1904.07675.
6. Sirer, E. G.&Eyal, I. (2014).Majority is not enough: bitcoinmining is vulnerable. International

Conference on Financial Cryptography and Data Security (pp. 436–454).
7. Zugenmaier, A., & Ritz, F. (2018). The impact of uncle rewards on selfish mining in ethereum.

IEEE Symposium on Security and Privacy (pp. 50–57).

http://arxiv.org/abs/1901.04620
http://arxiv.org/abs/1805.08281v2
http://arxiv.org/abs/1811.09322
http://arxiv.org/abs/1902.01513
http://arxiv.org/abs/1904.07675


The Speculative (In)Efficiency of the
CME Bitcoin Futures Market

Toshiko Matsui and Lewis Gudgeon

Abstract The launch of Bitcoin futures on the Chicago Board Options Exchange
(CBOE) and the Chicago Mercantile Exchange (CME) in December 2017 marked
a notable milestone in the development of cryptoassets. Yet while the speculative
efficiency of commodity markets has been extensively investigated, relatively little
analysis has been undertaken on the speculative efficiency of Bitcoin markets. In
this paper we investigate the speculative efficiency of the Bitcoin market, leveraging
an approach based on non-overlapping data samples, which has been previously
employed to the same end in the context of the London Metal Exchange (LME).
Using non-overlapping data on Bitcoin spot and futures prices as traded on the CME,
we find that the 1-month futures price is not an unbiased predictor of the spot price,
suggesting that the market is inefficient: it may be possible for a speculator to make
excess returns. In contrast, with 2-week and 1-week futures we are unable to reject
the null hypothesis of market efficiency. Moreover, we find that the futures price
becomes a more accurate indicator of the spot price as the futures contract becomes
shorter.

Keywords Bitcoin · Cryptoassets · Futures markets ·Market efficiency ·
Speculative efficiency hypothesis (SEH) · Derivatives · Chicago Mercantile
Exchange (CME) · London Metal Exchange (LME) · OLS
1 Introduction

Since the creation of Bitcoin [25] thousands of cryptoassets have come to fruition.
Bitcoin itself has received considerable attention from policymakers, regulators as
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well as investors [17]. It has also been suggested that Bitcoin should be regarded as
a speculative asset class for investment purposes, rather than a currency [2, 28].

One of the main issues of interest to regulators as well as market participants has
been whether the price of bitcoin is predictable, contradicting the efficient market
hypothesis (EMH) [13]. The research that does exist on the pricing efficiency of
bitcoin has found that it exhibits weak form efficiency [10, 23, 29, 30]—investors
cannot use past information to predict future returns—corroborating findings on
price behaviour idiosyncratic to bitcoin, such as price clustering [31, 32] and pricing
bubbles [12]. Urquhart [30] shows that bitcoin spot price returns are significantly
inefficient over the full daily closing price sample from 1st August 2010 to 31st
July 2016, but became more efficient between 1st August 2013 and 31st July 2016.
As a follow up study of Urquhart [30], Nadaraj and Chu [24] utilize eight different
tests and show whether a simple power transformation of the bitcoin returns satisfies
the weak form EMH. Bariviera [3] studies the long-range dependence of bitcoin
price returns and volatility, by utilizing a Detrended Fluctuation Analysis (DFA)
method rather than the commonly used Rescaled Range Series (R/S) method to
show variations in informational efficiency in daily price returns and long memory
processes in daily volatility. However, by using daily data from 2010 to 2017 and
performing a Hurst exponent analysis, Jiang et al. [18] find that while the Bitcoin
market exhibits long-termmemory (as was suggested by Bariviera [3]), a high degree
of inefficiency is observed and the bitcoin market has not become efficient over time.
Cobert [10] leverages the work of Brock et al. [8] to investigate whether using a
moving average-oscillator in combination with a trading range break-out strategy
on high frequency data is profitable for the bitcoin spot market. Al-Yahyaee et al.
[1] compares the efficiency of the bitcoin market with other markets including those
for gold, stock and currency by using the multifractal detrended fluctuation analysis
(MF-DFA) approach. They find evidence of long-memory and multifractality for
all four markets and that the bitcoin market is the most inefficient market of the
four. Further, Köchling [21] recently demonstrated that the introduction of futures
contracts for bitcoin has contributed to the market efficiency of bitcoin markets.

Historically, the EMH has been widely tested on stock, equity, currency markets
[16], commodity markets [5] and their derivatives. The commodity futures market is
mainly comprised of spot and futures prices with different maturities, and the prices
in the two markets exemplify the main measures of market efficiency. Noting that
futures prices reflect the expectation of market participants, and hence, assuming the
futures price at time t for a contract with maturity length n is an unbiased predictor
of the spot price as long as the hypothesis holds in the market at time t + n, one
way to test the EMH is to examine whether the futures price Ft,n is an unbiased
estimator of the future spot price St+n [16]. If the EMH is true, the forecast error
εt,n = St+n − Ft,n has a zero mean and is serially uncorrelated. In the most-cited
research, Canarella and Pollard [9] applied an ordinary least squares (OLS) model to
LondonMetal Exchange (LME) non-overlapping data, and an autoregressivemoving
average (ARMA) process to the error terms in overlapping data to test the speculative
efficiency hypothesis (SEH). For both non-overlapping and overlapping data, they
concluded that they were unable to reject a null hypothesis that the SEH holds,
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suggesting that futures prices are unbiased estimators of future spot prices. Yet there
is no consensus: Canarella and Pollard [9], Gross [14], and MacDonald and Taylor
[22] concluded the LME to be efficient, while Kenourgios and Samitas [20], Otto
[26], Park and Lim [27] concluded that the LME was inefficient.

While the speculative efficiency of the bitcoin market has been investigated by
a number of approaches, an approach which utilizes spot and futures prices to test
the speculative efficiency has received relatively little attention. Of the research that
does exist in this vein, [11] suggests that the introduction of bitcoin futures has
increased the spot volatility of bitcoin, the one which tested the information share
methodology such as Gonzalo and Granger to find the spot price leads the futures
price [4], while Kapar and Olmo [19] concludes the opposite. In this paper we
investigate the speculative efficiency of the bitcoin market, leveraging an approach
based on non-overlapping data samples, which has been previously employed to the
same end in the context of the LME [9, 26, 27].We focus on the relatively new bitcoin
futuresmarkets as provided on theChicagoBoardOptions Exchange (CBOE) and the
ChicagoMercantile Exchange (CME) fromDecember 2017. Using non-overlapping
bitcoin spot and futures price data from December 2017 to April 2020 we reject the
null hypothesis that 1-month futures prices are unbiased predictors of future bitcoin
spot prices, whereas for 2-week and 1-week futures prices, we are unable to reject the
null hypothesis. Additionally, we confirm the futures price becomes a more accurate
indicator of the spot price as the futures contract becomes shorter. This suggests
current 1-month bitcoin future price is not the perfect predictor of the future bitcoin
spot price, and hence the room for excess returns, but the market becomes more
efficient as the contract length shortens.

This paper is structured as follows. Section2 covers preliminaries, including the
EMH, the SEH and bitcoin futures markets. We subsequently presents the empirical
models and data in Sect. 3, and then results in Sect. 4. We conclude in Sect. 5.

2 Preliminaries

In this section we provide statements of the EMH and the SEH, and then introduce
the bitcoin futures markets.

2.1 The EMH

A financial market can be considered efficient if market prices fully reflect all avail-
able information [13].

Definition 1 The Efficient Market Hypothesis (EMH): Asset prices reflect all avail-
able information. There exist three forms of the EMH—weak, semi-strong, and
strong—as follows [7].
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Weak form EMH. Future asset prices are random and are not influenced by past
information such as past prices. Therefore investors cannot use technical or funda-
mental analysis to achieve excess returns.
Semi-strong form EMH. Current prices reflect all public information, with prices
quickly adjusting to reflect new public information. Therefore only private informa-
tion allows investors to earn excess returns.
Strong form EMH. All information, both public and private, is already reflected in
prices. No investor can earn excess returns.

Among the three forms of the EMH, the most commonly used is the weak form
EMH, as it represents the inability of the investors to take advantage of information
about past quotes of assets in order to predict the future values of the assets. The
efficiency of a market has been of immense interest in finance, as in efficient markets,
market participants can trade without any information research. The hypothesis has
also been tested by using bitcoin spot prices, as explained in Sect. 1.

2.2 The SEH

Commodity markets are mainly comprised of spot and futures contracts of different
maturities. A futures contract obliges the buyer and the seller to fulfil their contractual
commitment at a stipulated future date, whereas a spot contract requires the parties to
execute their commitments on the spot. The futures price reflects the expectation of
market participants, and at the expiry date, a futures contract that calls for immediate
settlement should have a futures price equal to the spot price.

One way to examine the EMH for futures markets has been to test the hypothesis
that the futures price at time t with the maturity length n, is an unbiased predictor of
the spot price in time t + n [16]. This hypothesis has been extensively analyzed in
commodity markets. However, testing this hypothesis involves both theoretical and
econometric concerns.

On the theoretical level, although the unbiased predictor hypothesis has been
associated with the EMH and rational expectations hypothesis [9], Bilson [6] showed
that the unbiased predictor hypothesis using the forward price is not a necessary
condition of either rational expectations or the EMH to hold. This is established
since (i) it is possible to construct frameworks in which market expectations are
rational, but in which futures prices differ from the future spot price because of
transaction cost and risk aversion and (ii) markets are efficient, in the sense that they
remove any opportunity for risk-free excess returns, feature a predictable bias in the
futures price forecast. Considering this discussion and to distinguish the unbiased
predictor hypothesis from the EMH, Bilson’s interpretation [6] in redefining the
unbiased predictor hypothesis as the SEH is followed in empirical verification of the
speculative efficiency analysis [9, 26, 27].

Definition 2 The Speculative EfficiencyHypothesis (SEH): The futures price at time
t with the maturity length n is an unbiased predictor of the spot price in time t + n,
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assuming the information available to market participants at time t (under Bilson’s
interpretation [6]).

From the econometric viewpoint, SEH testing poses a serious sampling dilemma:
we often need toworkwith datawhere the contract length is longer than the frequency
of observations. There have been two methods applied to confront this dilemma. The
first is to utilize non-overlapping observations and estimate using OLS. This ensures
the residuals ut,k are serially uncorrelated1 [16], however, it involves discarding a
lot of observations, which leads to reducing the samples to a featureless level. The
second uses overlapping data and applies an autoregressivemoving average (ARMA)
process for the forecast error term. This one is not as simple as the first approach,
but incorporates more information than the first method.

Existing literature on the SEH has mainly focused on commodity markets such
as the LMEmarket,2 but few on bitcoin futures markets so far. This is likely because
the bitcoin futures market has emerged very recently (December 2017), whereas the
LME has been in existence for over 100years.

2.3 Bitcoin Futures Markets

The tradingof futures contracts for bitcoin commencedon theChicagoBoardOptions
Exchange (CBOE) on 10th December 2017, and the Chicago Mercantile Exchange
(CME) on 18th December 2017. However the CBOE announced inMarch 2019, that
it would stop listing additional XBT futures contracts for trading, on account of the
fact that trading volumes for CBOE’s bitcoin futures were significantly lower than
those of the CME.

AlthoughCBOEandCMEhadbeen the two largest andbest-knownbitcoin futures
exchanges until the CBOE settled the last bitcoin futures contract on 19th June 2019,
there exist dozens of cryptocurrency futures trading platforms. One such platform is
Kraken, which offers futures trading in Ether (ETH), Litecoin (LTC), Bitcoin Cash
(BCH), andRipple (XRP). Examples of cryptocurrency futures contract pairs on such
platforms include BTC/USD, ETH/USD, LTC/USD, BCH/USD, XRP/USD, and
XRP/BTC. Today, more heavily regulatedmarkets, including the CME, still continue
to focus on Bitcoin and USD futures contracts, whereas unregulated marketplaces,
such as OKEx and BitMEX, have become one of the largest cryptocurrency futures
exchanges, launching various cryptocurrency futures trading platforms.

1See further discussion in Sect. 3.
2There are a number of studies that focus on the market efficiency of the LME, but there is no
consensus in the academic literature regarding the efficiency of the LME [26].
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2.3.1 Chicago Mercantile Exchange (CME)

The CME launched bitcoin futures “BTC” trading on 18th December 2017, with the
volume on the exchange increasing since then, reaching $2.1 billion in December
2019. Figure1 charts the bitcoin futures price.

The CME’s Bitcoin futures contract, ticker BTC, is a USD cash-settled contract,
based on Bitcoin Reference Rate (BRR), a daily reference rate of the U.S. dollar
price of one bitcoin. The BRR aggregates the spot bitcoin trading activities across
four bitcoin exchanges, itBit, Kraken, BitStamp, and GDAX, during a one-hour
calculation window between 3pm and 4pm GMT into the U.S. dollar price of one
bitcoin as of 4 p.m. GMT. Contract information for CME bitcoin futures contract is
summarized in Table1.

Fig. 1 CME bitcoin futures price (BTC1)

Table 1 Stylized facts on CME bitcoin futures

Variable Description

Ticker BTC

First traded 18th December 2017

Contract unit 5 bitcoins

Tick size $5 per bitcoin

Underlying spot price Bitcoin Reference Rate (BRR) index

Position limits 2,000 contracts per spot month

Trading hours Sunday to Friday, 5pm to 4pm CT (one-hour break at 5pm)

Expiry date Last Friday of each month
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BTC futures expire on the last Friday of each month, with the settlement date
the next Monday, and are listed on the nearest two months in the March quarterly
cycle (Mar, Jun, Sep, Dec) plus the nearest two months if not in the quarterly cycle.
Since each contract is for five bitcoins, a trader’s maximum exposure is 10,000
bitcoin.3 Bitcoin futures on theCMEare regulatedby theCommodityFuturesTrading
Commission (CFTC), the regulatory bodywith exclusive jurisdiction overUS bitcoin
futures markets, whereas other bitcoin futures markets are not necessarily regulated
by the authority.

3 Data and Methodology

We apply the methodology used to test the SEH on the LME [9, 26, 27] to investigate
the speculative efficiency of the CME bitcoin market. In order to examine whether
the futures price on the CME is an unbiased predictor of the future spot price, we
used non-overlapping bitcoin spot price and 1-month, 2-week and 1-week bitcoin
futures prices.

3.1 Methodology

As discussed in [26, 27], the SEH for commodity markets has been tested by exam-
ining if the futures price at time t with the maturity length n, is an unbiased estimator
of the spot price in time t + n [16]. Under the condition of risk neutrality and zero
transaction cost, the SEH implies the following:

St+n = Ft,n + εt,n (1)

Equation (1) shows that the futures price Ft,n withmaturity in n periods quoted at time
t is the best unbiased predictor of the future spot price St+n , when the futures contract
reaches maturity, given the all information are available at time t and given that the
forecast error term εt,n has zero mean and is serially uncorrelated. As discussed in
Sect. 2, we follow Bilson [6] in clarification of the unbiased estimator hypothesis as
the SEH, as was carried out in [9, 26, 27].

As Canarella and Pollard [9] indicated, one empirical way to test the SEH with
non-overlapping data is to estimate the following regression with ordinary least
squares (OLS):

st = a0 + a1 ft−1 + εt (2)

3The position limit used to be 1,000 contracts per spot month for any single investor, ceiling the
position limit to 5,000 bitcoin. The change took effect on 30th September 2019 for the October
2019 contract.
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where st is the natural logarithm of the spot price st and ft is the natural logarithm
of the 3-month futures price Ft . In our method, we use the 1-month futures price
instead, as the settlement day is last Friday of each month in the CME, and a 1-month
lag suffices to attain non-overlapping data. We also test 2-week and 1-week futures
prices to examine if there exists a difference in predictability of the market within
different contract length. If the futures price is an unbiased predictor of the spot price
at time t + n, coefficient for the constant a0 in the regression for Eq. (2) should be
insignificantly different from zero and the coefficient for the futures price a1 should
differ insignificantly from 1.

We employ a Wald test for the joint hypothesis that a0 = 0 and a1 = 1. Wald test
examines whether the explanatory variables in a model are significant. In our case,
if we are unable to reject the joint hypothesis that a0 = 0 and a1 = 1, we cannot
conclude that the futures price is not an unbiased estimator of the future spot price.

3.2 Data

Following Canarella and Pollard [9], we collected bitcoin spot and futures closing
prices data at theCME from19thDecember 2017 to 30thApril 2020 fromBloomberg
to construct the non-overlapping data set. We used 1-month, 2-week and 1-week
expiry futures price and each resulted in N = 28 non-overlapping observations.4 The
prices are listed in U.S. dollars.

Table2 presents the descriptive statistics of prices and returns of bitcoin spot and
futures markets used in the experiment, while Fig. 2 displays the spot prices and the
1-month future prices betweenDecember 2017 andApril 2020.We can see similarity
in price movement between the bitcoin spot and futures prices, suggesting that the
futures price predicts the spot price to some extent and vice versa. However, key
differences are observed regarding the standard deviation, skewness and kurtosis.
The standard deviation is larger for the futures both in terms of prices and returns,
indicating that they are more volatile.

We also find large differences between spot and futures prices regarding skewness.
In terms of prices, futures exhibit more positive skew than spot prices, with futures
prices skewed further to the right than spot prices. In terms of returns, futures are
asymmetric, with a slightly right-skewed distribution, while spot returns are left-
skewed.

Regarding kurtosis,5 spot prices and futures prices are relatively leptokurtic when
compared with the normal distribution (with heavier tails). In terms of returns, also
both series have heavier tails than the normal distribution. Overall, the leptokurtosis
of futures suggests that an investment in futures is risky.

4The observations for the spot and the 1-month/2-week/1-week futures price were constructed as a
closing price of the last Friday of each month.
5The kurtosis of a normal distribution is 3.
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Table 2 Descriptive Statistics for bitcoin spot and futures prices

Spot Futures

Price Return Price Return

Mean 7,657.3 0.000025 7,714.0 −0.000136

Median 7,541.6 −0.000292 7,450.0 −0.000523

Maximum 18,674.5 0.250035 19,700.0 0.249214

Minimum 3,156.9 −0.271874 3,145.0 0.234882

Std Dev. 2,604.2 0.048443 2,690.8 0.049260

Skewness 0.63593 −0.137478 0.71924 0.034729

Kurtosis 4.16252 7.587694 4.52716 7.610152

Fig. 2 Comparison of bitcoin spot and futures prices

Non-Overlapping Data

To understand the implication of applying non- overlapping data as sample data,
consider the forecast error ut,k = st+k − ft,k , where st+k denotes the natural loga-
rithm of the spot price at time t + k, and ft,k is the natural logarithm of the futures
price at time t for delivery (settlement) at time t + k. When observations are non-
overlapping, namely, k = 1, it can easily be shown that the forecast error ut,k is
serially uncorrelated, whereas E(ut,kut+h,k) equals to zero only for all h > k when
observations are overlapping. We therefore utilized non-overlapping data to yield a
simple, tractable model. From an empirical perspective, we check the correlogram as
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well as Durbin–Watson (DW) statistic to confirm if the non-overlapping futures price
data set which we used for empirical analysis in fact does not include information to
be found in first-order autocorrelation, as was discussed in Canarella and Pollard [9].

4 Results

We estimate Eq. (2) in Sect. 3.1 by OLS and present the results in Table3. Each
column refers to a different (non-overlapping) data sample, with 1-month denoting
the futures price as taken 1month before delivery date, 2-week denoting the futures
price 2weeks before the delivery date and similarly for the 1-week futures.

For the futures price to be an unbiased predictor of future spot prices, the null
hypothesis (H0) is that a0 is statistically insignificant from 0 and that a1 is statistically
insignificant from 1 [9, 15, 27].

Regarding the 1-month data sample, we find that both the constant and the lag of
futures price is significant at the 1% level. Moreover, an F-test for joint significance
yields a probability of 0.026, enabling us to reject the null hypothesis at the 5%
significance level. This means that we can reject the hypothesis that the futures
price is an unbiased predictor of future spot prices, or in other words, the 1-month
futures price is not an unbiased predictor of the spot price. In turn, this suggests that
the market for 1-month bitcoin futures is inefficient, suggesting inefficiency in the
pricing of the futures price. A market is efficient if prevailing prices in the market
reflect all currently available information.

In contrast, regarding both the 2-week and 1-week data samples, we are unable
to reject the null hypothesis of market efficiency: in these cases we are unable to
reject the null hypothesis that the futures price is an unbiased predictor of the spot
price. Moreover, we note that as we move from the 2-week to the 1-week futures

Table 3 OLS parameter estimates and related statistics for Eq. (2)

Variable 1-month 2-week 1-week

a0 2.097** 0.568 0.205

(0.800) (0.474) (0.304)

a1 0.761*** 0.937*** 0.975***

(0.089) (0.055) (0.035)

N 28 28 28

R2 0.634 0.889 0.962

F-statistic
(H0: Constant =
0, a1 = 1)

4.228 1.544 0.808

(F-statistic
probability)

0.026 0.233 0.457

*** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors in parentheses
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contract, the estimate of a1 increases slightly, from 0.937 to 0.975, indicating that
as the futures contract becomes shorter the futures price becomes a more accurate
indicator of the spot price.

Given the prima facie plausibility of a unit root in both the futures price and the
spot price, by way of robustness checks we consider the Durbin–Watson statistic,
which tests for serial correlation in the residuals of the regressions and suggests
there is no evidence of auto-correlation in the residuals.6 This is confirmed by visual
inspection of the lags of the residuals, which do not show statistically significant
serial correlation at the 1% level. Therefore, as econometric theory suggests, we
consider that the two series cointegrate such that a linear combination of the series
is stationary, yielding valid OLS results.

One possible explanation for the apparent market inefficiency arising with the
1-month futures is that the bitcoin markets are insufficiently liquid, preventing prices
from reflecting all available information. The apparent market inefficiency, that the
current future price is not the best predictor of the future spot price, suggests specu-
lative inefficiency and therefore the possibility of generating excess returns.

5 Conclusion

In this paper, using non-overlapping CME data from the period December 2017 to
April 2020,we analyzed bitcoin spot and futures price data to estimate the speculative
efficiency of the Bitcoin market. While several papers have examined the efficiency
of the bitcoin market with reference to the bitcoin spot price, here we test for market
efficiency by leveraging futures prices. In doing to we adapt a methodology previ-
ously applied to the LME to the relatively new bitcoin futures markets as provided
on the CBOE and the CME from late 2017 [11].

We find that 1-month bitcoin futures prices are not unbiased estimators of future
bitcoin spot prices. This suggests that the market for 1-month bitcoin futures is
inefficient, implying the possibility for generating excess returns. On the other hand,
for 2-week and 1-week futures prices, we are unable to reject the null hypothesis that
futures prices are unbiased predictors of future bitcoin spot prices. Additionally, we
found the bitcoin futures price becomes a more accurate indicator of the spot price
as the futures contract becomes shorter. This leads to the conclusion that the current
1-month Bitcoin futures price is not an unbiased estimator of the future bitcoin spot
price, and hence making room for excess returns, but that the market becomes more
efficient as the contract length shortens.

Future work includes the application of the methodology proposed to larger data
sets or to test different bitcoin futures markets data. This is because the features of

6The DurbinWatson (DW) statistic tests for autocorrelation in the residuals of a regression analysis.
The DW statistic takes a value between 0 and 4.A value of 2.0 shows that there is no autocorrelation
detected in the sample. Values from 0 to less than 2 indicate positive autocorrelation and values from
2 to 4 suggest negative autocorrelation. In our sample, DW statistic for 1-month futures regression
results is 1.956.
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the CME bitcoin futures contract prohibited us from obtaining high frequency non-
overlapping data enough to test with daily observations. Testing with data from these
marketswould guarantee robustness of the empirical results. Additionally, larger data
sets would enable us introduce autoregressive moving average (ARMA) model,7 as
tested in [9, 26]. Utilizing the ARMA approach would make it possible for us to
empirically test the SEH with overlapping data, which avoids reducing the sample
size.
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Carbon Trading with Blockchain

Andreas Richardson and Jiahua Xu

Abstract Blockchain has the potential to accelerate theworldwide deployment of an
emissions trading system (ETS) and improve the efficiencyof existing systems. In this
paper, we present a model for a permissioned blockchain implementation based on
the successful European Union (EU) ETS and discuss its potential advantages over
existing technology. The proposed ETS model is both backward compatible and
future-proof, characterised by interconnectedness, transparency, tamper-resistance
and continuous liquidity. Further, we identify key challenges to implementation of
blockchain in ETS, as well as areas of future work required to enable a fully decen-
tralised blockchain-based ETS.

Keywords Blockchain · Carbon trading · ETS · Sustainability · ESG

1 Introduction

Carbon trading systems, such as the European Union Emissions Trading System (EU
ETS), provide a market mechanism to incentivise emissions reduction on the basis
of cap and trade. An overall cap on emissions in tonnes of CO2-equivalent1 (tCO2e)

1Scaling factors known as Global Warming Potentials (GWPs) are used to normalise the impact of
various Greenhouse Gases (GHGs) emitted against CO2 (which, by definition, has a GWP of 1).
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is imposed by a central authority, which is translated into allowances that are issued
to companies. These allowances are surrendered and retired at the end of a reporting
period to offset the company’s emissions during the period, with the company free
to trade any surplus allowances on the market [28]. Importantly, should a company
have insufficient allowances to cover their (expected) emissions, they are obliged to
either purchase surplus allowances from other market participants, or take measures
to reduce their emissions; penalties are imposed for non-compliance [28]. Naturally,
a high price for allowance units incentivises participants to choose the latter option.

On first inspection, this system appears to be suited to an application of blockchain
technology, as it involves multiple distributed parties transacting using common cur-
rencies and requires transactions to be recorded in an immutable ledger. Indeed,
multiple organisations and startups are actively exploring this approach [8]. How-
ever, on closer inspection, the centralised nature of ETSs in their current form and
the immaturity of the blockchain industry pose some critical challenges to the adop-
tion of the technology. One of the frequently-cited advantages of blockchain is the
“disintermediation of trust” [1, 9, 10], meaning a central trusted authority is not
required for the network to reach consensus. Yet current ETS designs make heavy
use of trusted authorities: a central (governmental) authority is responsible for the
distribution of allowances under the cap, whether by direct allocation or through
an auction process; further, companies must report their emissions to the central
authority and seek verification of this figure from a third-party [19]. More generally,
security loopholes and unethical activities permeating the blockchain space continue
to act as a barrier against immediate adoption of this still evolving technology [11,
37, 45].

As a result, a clear and compelling case must be made to justify the advantages of
blockchain over existing technologies. A number of frameworks have been proposed
for assessing potential blockchain implementations, considering technical, organi-
sational and legal factors [9, 10, 31], whilst a series of strategic questions have been
raised for business leaders evaluating blockchain’s potential [11, 23]. The extreme
interest shown in blockchain technology over recent years and the resulting disil-
lusionment with its failure to meet over-hyped promises means the technology is
treated with caution; its pros and cons must be carefully weighed [22, 33, 34].

In this paper, we describe the advantages and challenges of implementing
a blockchain-based ETS, and sketch out a hybrid model that is both backward com-
patible and future-proof.

2 Background

We first present the EU ETS as a prime example of a contemporary ETS, using
it to introduce a discussion of the weaknesses in current ETSs and highlight areas
where blockchain technology has strong potential. We additionally present a review
of selected literature in this space.
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Fig. 1 Overview of the EU ETS. Lines represent transactions between parties; the two layers of
government represent the European Commission and member states.

2.1 EU ETS

The EU ETS was launched in 2005 and has become the largest ETS to date, repre-
senting the majority of international emissions trading [12, 19]. Its coverage extends
to over 11,000 installations (power stations and industrial plants) with significant
energy usage as well as airlines operating in the EU, together representing about half
of the EU’s greenhouse gas (GHG) emissions2 [18]. A representative schematic of
the different players and transactions in the EU ETS is presented in Fig. 1.

Tradeable instruments The EU ETS introduces a new tradeable instrument along-
side the allowance unit: credits. Whilst allowances are issued by governments
of member states through allocation or auction, credits are generated through
emissions-reduction projects in other countries under Kyoto Protocol mechanisms.
Any allowances or credits surplus to an installation’s requirement to offset its emis-
sions may be freely traded for profit [19].

Impact Relative to a 2005 baseline, the EU ETS is expected to have reduced emis-
sions by 21% in 2020 and by 43% in 2030, indicating that the underlying market
mechanism is functioning as expected [18].

2The GHGs covered by the EU ETS are carbon dioxide (CO2), nitrous oxide (N2O) and perfluoro-
carbons (PFCs). [19]
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2.2 Potential and Suitability of Blockchain

Despite their successes, there still exist issues with both the EU ETS and ETS more
broadly, which this paper seeks to address. Specifically, we argue that blockchain
technology shows great potential to advance the state of the art in a number of key
areas of ETS development.

Coverage Existing ETSs are restricted in terms of geographical coverage, with large
portions of the world currently lacking plans to implement ETS [9]. A distributed
scalable blockchain-based ETS solution could rapidly support new carbon markets
by allowing nodes to join the network with ease. Article 6 of the 2018 Paris Agree-
ment already provides a foundation for decentralised cooperative climate action;
blockchain is expected to be a key technology to deliver these ambitions, particu-
larly through future carbon markets [6, 15].

Linkage Accounting, auditing and mutual monitoring of emissions between entities
in disconnected ETSs are deemed challenging. For example, it is believed that for the
UK, an exit from the EU—and consequently the EU ETS—may hinder attempts to
meet future carbon budgets [24]. Although some ETSs have previously implemented
links, the process is complex and lengthy, as evidenced by the near decade-long
process to link the Swiss and EU ETS [13, 20]. In this context, an easily extensible
linked ETS solution that can be rapidly deployed in new areas would be highly
desirable.

An interlinked web of ETSs would increase market liquidity and size [16, 29, 36,
40], and reduce opacity inherent in siloed systems. Transparently linking multiple
ETSs would increase the likelihood of discovery, and hence lower the chance, of
fraudulently claiming credits from the same project in multiple systems (“double-
counting”) [9, 10, 16].

Cost A (semi-)automated decentralised system embedding smart contracts can be
used to reduce overall transaction cost. For individual enterprises, fixed costs can be
further cut especially when spread across a large network. Lower transaction costs
reduce barriers to entry, allowing coverage to be extended to smaller enterprises and
less-developed geographies.

TrustAscodifiedprotocols in immutable smart contracts are tamperproof, blockchain-
based ETSs are expected to improve trust relative to existing systems [7]. This could
help maintain market confidence and integrity with linked ETSs, for example if one
ETS operates in a jurisdiction with an increased risk of corruption [16].

TransparencyThe shared, distributed nature of a blockchain systemunderpins trans-
parency. Address anonymity (or pseudonymity) with blockchain would allow trans-
actiondata to bemade available inmuchgreater detail,without compromisingprivacy
or confidentiality concerning e.g. ETS players’ trading positions. Compared to the
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EU ETS transaction log (EUTL), from which relatively little data is made available,
increased scrutiny of public data could strengthen systems and reduce the risk of
government corruption [9, 10, 19, 21].

Consensus and fault tolerance Well-designed consensus mechanisms provide a
degree of fault tolerance that allows the system to operate normally even with the
presence of misbehaving actors or malfunctioning nodes in the network [2, 5, 42].
This is relevant particularly in the context of linking ETSs, where heterogeneous
players with various levels of credibility and reliability are connected to the system.

2.3 Existing Work

Existing attempts to bring the benefits of blockchain to carbon trading have gener-
ally had a limited impact and a short lifespan [21], being largely predicated on the
small voluntary carbon market. As such, any blockchain solution will require signif-
icant support from existing ETS regulators to ensure sufficient impetus for further
growth and development. Once “critical mass” of usership is achieved however, a
solution can be expected to become self-sustaining; the contribution of regulators
to facilitate access to the regulatory compliance market is likely to be a significant
factor for success. Also of note is that despite favourable press coverage over the
past years, blockchain is not a panacea and still suffers from crucial limitations [43]
(see discussion in Sect. 4).

In Table 1, we layout selected existing works related to the present discussion;
whilst the concept of a blockchain-based ETS has already been broadly discussed,
this study considers the practical implementation of such an ETS.

3 Proposal

Given the challenges involved in the development of a completely decentralised
blockchain-based ETS, a more pragmatic approach might be to progressively
improve upon existing ETS frameworks. Thus, we sketch out a hybridmodel combin-
ing some degree of decentralisation whilst maintaining a role for trusted authorities,
as illustrated in Fig. 2. This does not preclude a future switch to a fully decentralised
model, but it is expected to provide an easier transition to blockchain technology for
existing ETS players, increasing the practical feasibility of the proposal.
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Table 1 Overview of selected existing works

Source Description

Discussion papers

[4] Presents a systems engineering approach to a decentralised emissions trading
infrastructure. Reviews architecture (covering e.g. database type, credit
issuance, existence of central authority etc.) of other carbon trading schemes

[9] Outlines blockchain potential for ETS, climate mitigation and climate finance
applications in the specific context of Mexico, with discussion of potential
implementation (technologies, costs, roadmap etc.)

[10] Provides an overview of blockchain potential, suitability and challenges for
applications including ETS, MRV and climate finance

[16] Describes current climate markets from a technological perspective and
discusses improvements. Presents potential and suitability of blockchain

[21] Argues for the suitability and potential of blockchain in achieving the
commitments of the Paris Agreement and for climate action in general, with
discussion of areas of required future work

Implementation work

[17] Discusses general suitability of blockchain for ETS applications, and presents
a proof-of-concept implementation for a transportation-specific ETS using
Hyperledger Iroha

[27] Proof-of-concept blockchain for green certificates (proof of electricity
generation from renewable sources) in a microgrid electricity trading
environment using the Corda platform

[30] Proof-of-concept ETS implementation using “reputation points” to determine
market access priority, thus aiming to tackle security issues identified with
EU ETS. Includes detailed quantitative analysis of improvement relative to
conventional systems

[32] Develops detailed proof-of-concept blockchain for EU ETS using smart
contracts on Ethereum. Discusses software development process
(requirements, use cases) and system architecture (implementation) in detail

3.1 Taxonomy

In this proposal the following definitions are used:

Organisation The simplest type of entity in the network, upon which other roles
are built. An organisation provides a framework to manage common
metadata required to interact with the blockchain (e.g. public/private
key management).

Authority Governmental or supranational body, with legislative power over
other authorities or enterprises within a certain jurisdiction.
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Fig. 2 Schematic showing potential interactions in the outlined blockchain-based ETS

Enterprise “Legal person” consisting of one ormore installations or projects that
uses the network to report and/or offset emissions. An enterprisemay
be mandated to participate in the network by an authority or access
it voluntarily, and may carry verifier status.

Installation Physical source of GHG emissions—such as factories, manufactur-
ing plants, offices—owned by one or more enterprises.

Project Emissions reduction scheme generating carbon credits under Kyoto
Protocol mechanisms, owned by one or more enterprises.

Verifier Status awarded to an enterprise by an authority, allowing it to perform
verification functions within the network.

3.2 Tokens

Two types of token are envisaged for network, closely mirroring current ETS book-
keeping [9, 19] (see Sect. 3.5).

Emission 1 tCO2e verified GHG emissions.
Permit Permit to emit 1 tCO2e. Permits can represent both allowances issued

by an authority, or credits granted by a verifier.
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3.3 Processes

In this section, we present a basic outline of processes performed on the network,
illustrated with smart contract pseudocode required for their execution.3 At the scale
required of an international ETS, a custom-developed blockchainmaybemore appro-
priate; nevertheless, our approach provides a general framework for presenting and
debating a proof of concept.

Role change An authority can change the role of an enterprise, including promotion
of an enterprise to verifier status or removal of an existing status.

Algorithm 1 Role change

1 Function setRole(address sender, address target, string newRole)
2 require sender.role = authority and target.role �= newRole // Sender

must be authorised and request is a change

3 target.role ← newRole

Issuance of permit Emission permits can represent either allowances issued by an
authority, or credits issued by a verifier.

An authority can mint permit tokens typically in an amount corresponding to the
desired cap level. The tokens may be issued through direct allocation or auction.

Algorithm 2 Mint permit token

1 Function mintPermit(address signer, address target, uint amount)
2 require signer.role = authority // Only authorities can mint

permits

3 target.balance[permit] += amount
4 market.balance[permit] += amount

Permit tokens can also represent credits granted by a verifier to an enterprise
owning emission-reducing projects.

Algorithm 3 Grant permit token

1 Function grantPermit(address signer, address target, uint
amount)

2 require hasProject(target) and signer.role = verifier // Verifier

ensures that the enterprise has a carbon-reducing project

3 target.balance[permit] += amount
4 market.balance[permit] += amount

Both mintPermit and grantPermit allow permit tokens to be issued “out
of thin air”, thus increasing the total circulating supply of the token in the market.

3Our pseudocode is inspired by the Solidity language used to implement smart contracts on the
Ethereum blockchain.

https://github.com/ethereum/solidity


Carbon Trading with Blockchain 113

In Sect. 3.4 we quantify the effect of this mechanism on the market price of permit
tokens.

Issuance of emissions Emission tokens may be minted by any enterprise if a verifier
co-signs the transaction as a true reflection of the enterprise’s emissions.

Algorithm 4 Mint emission token

1 Function mintEmission(address sender, address signer, uint
amount)

2 require signer.role = verifier // Must be signed by a verifier

3 sender.balance[emission] += amount
4 market.balance[emission] += amount

Transfer tokens Permit tokens which represent emission allowances and credits
may be freely transferred among network participants, who may choose to create
derivative products such as swaps and options (as in the EU ETS [19, p. 71]) or to
send tokens to an exchange.

Algorithm 5 Transfer permit tokens

1 Function transferPermit(address sender, address target, uint
amount)

2 require amount ≤ sender.balance[permit]
// Must have enough token for request

3 sender.balance[permit] –= amount
4 target.balance[permit] += amount

Burn tokens Emission tokens are burnt alongside an equal or greater number of per-
mit tokens in a single transaction. This process also allows enterprises to voluntarily
surrender excess permit tokens if they so choose (as is possible in the EU ETS [19,
p. 131]). Enterprises cannot transact with emission tokens in any other way.

Algorithm 6 Burn tokens

1 Function burnToken(address sender, uint amount)
2 require amount ≤ sender.balance[permit] // Must have enough token

3 if sender.balance[emission] ≥ amount then
// Only burning part of emission balance

4 sender.balance[emission] –= amount
5 else if sender.balance[emission] < amount then

// Burning beyond emission balance (voluntary surrender)

6 sender.balance[emission] = 0

7 sender.balance[permit] –= amount

Token exchange Organisations can freely trade their permit tokens with the author-
ity, which also acts as a liquidity provider. To ensure liquidity in the market and
hence enhance the tradability of tokens, we can implement the Bancor protocol [25,
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39] which automates price determination according to the dynamics of supply and
demand (see Algorithms 7 and 8, and Appendix “Bancor Algorithm for Token
Exchange”).

Algorithm 7 Trade tokens

1 Function tradeToken(address sender, uint amount)
2 supply ← market.balance[permit]
3 cashAmount ← reserve * ((1 + amount/supply)^(1/fraction) – 1)

// Based on eq. (7) in Appendix
4 if amount > 0 then
5 require cashAmount ≤ sender.cash // Must have cash to spend
6 sender.balance[permit] += amount
7 market.balance[permit] += amount
8 sender.cash –= cashAmount
9 reserve += cashAmount

10 else if amount <= 0 then
11 require–amount ≤ sender.balance[permit] // Must have token to sell
12 sender.balance[permit] += amount
13 market.balance[permit] += amount
14 sender.cash –= cashAmount
15 reserve += cashAmount

Algorithm 8 Convert cash

1 Function convertCash(address sender, unit amount)
2 supply ← market.balance[permit]
3 tokenAmount ← supply * ((amount/reserve + 1)^fraction −1)

// Based on eq. (8) in Appendix
4 if amount > 0 then
5 require amount ≤ sender.cash // Must have cash to spend
6 sender.balance[permit] += tokenAmount
7 market.balance[permit] += tokenAmount
8 sender.cash –= amount
9 reserve += amount

10 else if amount <= 0 then
11 require–tokenAmount ≤ sender.balance[permit] // Must have token to

sell
12 sender.balance[permit] += tokenAmount
13 market.balance[permit] += tokenAmount
14 sender.cash –= amount
15 reserve += amount
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Fig. 3 Token price as a function of supply as specified in (4)

3.4 Market Adjustment

With the development of technology, the cost of emissions reduction will decrease
over time. As a result, the supply of surplus allowances and credits will increase,
whilst demand for them decreases, driving the price of tokens down. Thus it may
become cheaper for firms to use credits to offset their emissions rather than reducing
the emissions directly.

With the emissions cap being a moving target, the authority may steer the market
in order to continuouslymotivate emission reduction. In addition to having the power
to change the cap level and so restrict the supply of allowances the authority can also
adjust, the price of tokens through the exchange. According to (1), the tokens’ market
price can be raised in two ways:

• Reducing reserve fraction F , allowing for stablecoin (digital cash) to be spent
from the exchange and thus enhancing its purchasing power;

• Increasing the total stablecoin reserve c0, thus enhancing the purchasing power of
the exchange;

Naturally, in order to reduce the token price, the authority can simply do the opposite.



116 A. Richardson and J. Xu

3.5 Carbon Bookkeeping on and off Blockchain

We demonstrate the compatibility of our proposed blockchain-based model with the
existing ETS frameworks through an illustrative example. In principle, blockchain
is underpinned by time-honoured bookkeeping mechanisms including TEA (Triple
Entry Accounting) and REA (Resources-Events-Agents) [26]. Therefore, the com-
patibility between the conventional and the newly proposed ETS record-keeping
framework is expected to an extent.

In our illustrative example, the following series of accounting events take place.
For simplification purposes, we ignore the slippage effect as the transacted emissions
in our example is assumed to account for an insignificant portion of the total market
volume.

1. On January 1, 2020, the market value for of one permit token was 20 e.

• AuthorityA allocated Enterprise E with allowances for 100 tCO2e by issuing
E 100 permit tokens.

• Verifier V approved Enterprise E ’s carbon-reducing project in a developing
country and granted E with credits for 40 tCO2e by issuing E 40 permit tokens.

• Enterprise E transferred 10 permit tokens to Enterprise F .

2. On June 30, 2020, the market value of one permit token increased to 24 e.

• Enterprise E recorded 55 tCO2e emissions from January to June.
• Enterprise E cashed out 240 e by selling 10 tokens to the market.

3. On December 31, 2020, the market value of one permit token decreased to 22 e.

• Enterprise E recorded 70 tCO2e emissions from June to December.
• Enterprise E bought 5 permit tokens from the market to cover the emissions.
• Enterprise E surrenders 125 permit tokens to offset the total emissions of 125
tCO2e during year 2020.

In Table 2, we juxtapose smart contract execution with double-entry journalisa-
tion from the perspective of Enterprtise E to show the correspondence of the two
systems. We use the fair value method [35, 38] to record.

Conventionally, revaluation gains or losses are only recorded on prescribed finan-
cial accounting dates (June 30 and December 31 in our example). However, with a
blockchain-based network that connects account books of participating enterprises,
equity change due to market movement can be recorded automatically and continu-
ously. This would enable a constantly up-to-date valuation of an enterprise with no
additional labour cost on accounting, auditing and reporting.
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Table 2 Carbon accounting with smart contract execution and journalisation

Smart contract execution Journalisation Debit Credit

mintPermit (A , E , 100) Asset Emission
permit—Allowances

2,000

Liability Deferred income 2,000

grantPermit (V , E , 40) Asset Emission
permit—Credits

800

Liability Deferred income 800

transferPermit (E ,F , 10) Liability Deferred income 200

Asset Emission permit 200

Asset Emission permit 520

Equity Gain on revaluation 520

mintEmission (V , E , 55) Liability Deferred income 1,100

Equity Income 1,100

Equity Expenses—Emissions 1,320

Liability Permit surrenderable 1,320

convertCash (E , −240) Asset Cash 240

Asset Emission permit 240

Liability Deferred income 200

Equity Income 200

Equity Loss on revaluation 240

Asset Emission permit 240

mintEmission (V , E , 70) Liability Deferred income 1,300

Equity Income 1,300

Equity Expenses—Emissions 1,430

Liability Permit surrenderable 1,430

tradeToken(E , 5) Asset Emission permit 110

Asset Cash 110

burnToken(E , 125) Liability Permit surrenderable 2,750

Asset Emission permit 2,750

4 Further Challenges and Considerations

Implementation The specific platform chosen to host a blockchain-based ETS is a
central consideration. In [10], Bitcoin, Ethereum, Hyperledger Fabric and EOS are
evaluated for climate policy applications, considering programmability, operating
cost, security and usability, with the finding that Ethereum and Hyperledger Fab-
ric are the most promising platforms to date. Similarly, [32] considers Ethereum
and Hyperledger Fabric as strong candidate frameworks for ETS implementation,
noting important distinctions between the two: Ethereum is by default public and
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permissionless; Hyperledger Fabric is private and permissioned. A more complete
discussion of many other platforms can be found in [2].

As discussed previously, both developing a derivative blockchain solution (e.g.
usingHyperledger Fabric) and developing an entirely custom implementation should
be considered in finding an approach to host an ETS at large scale. The relative benefit
of building upon an established system (e.g. pre-existing audited and/or open-source
code) must be weighed against the degree of customisation desired. Further, should
differing implementations be developed by governments or organisations, standard-
isation could still enable interoperability [14].

Governance and trust Since the “allocation of allowances, the opening and closing
of ETS registry accounts or the recognition of offset credits “still fall under sovereign
tasks of the government”, a comprehensive carbon network would by default involve
governments as central authorities [9]. The initial delegation of authority in a permis-
sioned blockchain-based ETS requires participants to trust the authority establishing
the network and thus the integrity of the tokens issued. With ETS linkage that con-
nects different states and regions, participants may not trust all authorities equally,
imposing the need for an on-chain governance design that ensures the integrity of
authorities. Importantly, whilst smart contracts may be ideally suited for the rigorous
application of defined rules, these rules must first be developed in collaboration with
stakeholders [16].

Further, a potential future shift towards a decentralised blockchainwithout explicit
governmental oversight presents a significant complication: should there exist trust
asymmetries between players, the fungibility of tokens issued by different entities
will be challenged and could lead to fragmentation of the network. One solution
could be standardisation [14].

Enforcement Current ETSs utilise legislation to compel enterprises to participate.
Whilst a voluntary carbon market does also exist, it is significantly smaller than the
regulatory compliance market [41]. In a completely decentralised international ETS,
it is less clear what would encourage participation (or discourage non-participation).
Additionally, defining how criminal activity on the network would be deterred is
challenging, potentially requiring a supranational enforcement body to maintain net-
work integrity. Indeed, “new governance systems will be needed to ensure market
and environmental integrity in a peer-to-peer environment” [16].

Measurement, reporting and verification (MRV) A critical issue with any
blockchain solution is its interface with the real world [43]; the maxim “garbage in,
garbage out” aptly illustrates the consequences of poor input data. The verification
and accreditation processes in the EU ETS are complex and potentially burdensome
[19]. Moving beyond the model of trusted verifiers to a truly decentralised approach
will require significant effort to develop alternative MRV methodologies.

The internet of things (IoT) will enable a universally trusted mechanism for MRV
of real-world data, by automating data flows and processes [16, 21]. IoT technology
is expected to reduce the cost and time requirement of MRV, whilst enhancing trust
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through increased reliability and the accessibility of audited code. Real-time sens-
ing will enable a faster compliance cycle than the current yearly process in the EU
ETS [9, 21], whilst increased trading activity through more frequent reporting and
compliance will enhance market liquidity. Additionally, diverse data sources such as
earth observation satellites will enable stronger verification of reported emissions or
emissions reductions.

EfficiencyRepresented by Bitcoin, existing blockchain networks commonly employ
a computationally expensive consensus mechanism, “proof-of-work”, and are rather
inefficient compared to centralised database systems, especially in terms of electric-
ity usage [3, 16]. One study has estimated that the global Bitcoin network consumes
approximately as much power as the country of Ireland, and forecasts this con-
sumption increasing more than three-fold in the future [44]. Consequently, various
alternative consensus mechanisms have been proposed to improve efficiency and
reduce the environmental impact of the infrastructure itself [5, 37].

5 Conclusion

In this paper, we investigate the applicability and demonstrate the technical feasibility
of blockchain technology to carbon trading on ETS. We conclude that despite the
potential for blockchain to enhance the impact and reach of current ETSs in numerous
ways, significant barriers remain, limiting the applicability of the technology today.
A basic outline of a permissioned blockchain solution largely mirroring today’s EU
ETS has been presented as a viable transitional first step towards the development
of a fully-decentralised blockchain-based ETS, which could significantly accelerate
the deployment of this important emissions reduction tool worldwide. We maintain
that significant legislative and legal barriers remain to be overcome for sensible and
effective implementation of a decentralised blockchain-based ETS.

Acknowledgements The authors thanks Chris N. Bayer, Juan Ignacio Ibañez, and Vincent Piscaer
for their comments and suggestions.

Appendix

Bancor Algorithm for Token Exchange

As demonstrated with Algorithms 7 and 8, the Bancor exchange protocol [25, 39]
ensures constant tradability of a token, as it prices a token algorithmically, as opposed
throughmatching a buyer and a seller. We use the notation listed in Table 3 to explain
the protocol.
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Table 3 Mathematical notation for token exchange

Notation Definition Unit

Preset hyperparameters, occasionally adjusted

F Constant fraction of stablecoin reserve —

Input variables

s0 Pre-transaction outstanding token supply tokens

c0 Pre-transaction stablecoin reserve e/token

e Tokens to be bought (negative when sold) tokens

t Stablecoins to be spent (negative when received) e

Output variables

s Post-transaction outstanding token supply tokens

P(.) Post-transaction token price, dependent on token supply s e/token

C(.) Post-transaction stablecoin reserve, dependent on token
supply s

e

For demonstration purposes, we assume that the medium of exchange is a stable-
coin, measured in e, that circulates on the same blockchain as the permit tokens.

It holds that, the stablecoin reserve C (in e), always equals a fraction, preset as
F ∈ (0, 1), of the product of token price P (ine/token) and outstanding token supply
s (in tokens). That is, the following equation is always true:

C(s) ≡ F s P(s) (1)

Taking the derivative with respect to s on both sides:

dC(s)

ds
≡ F

[
P(s) + s

dP(s)

ds

]
(2)

There exists another relationship between C , P and s: if one buys from the
exchange an infinitesimal amount of tokens, ds, when the outstanding token sup-
ply is s, then the unit token price at purchase would be P(s). The exchange receives
stablecoins and thus its reserve increases according to:

dC(s) = P(s) ds

Rearranging:

P(s) = dC(s)

ds
(3)

Combining (2) and (3),
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P(s) = F

[
P(s) + s

dP(s)

ds

]

dP(s)

P(s)
=

(
1

F
− 1

)
ds

s

Integrating over s ∈ (s0, s):

∫ P(s)

x=P(s0)

dx

x
=

(
1

F
− 1

) ∫ s

y=s0

dy

y

ln P(s) − ln
c0
F s0

=
(
1

F
− 1

)
(ln s − ln s0)

Now we can express token price P(.) as a function of s:

P(s) = c0
F s

F

√
s

s0
(4)

Plugging (4) into (1), we can derive the exchange’s stablecoin reserve C(.) as a
function of s:

C(s) = F s
c0
F s

F

√
s

s0
= c0 F

√
s

s0
(5)

Assume one spends t amount of stablecoins in exchange for e amount of tokens
when the outstanding token supply equal s0. After the purchase, the outstanding
token supply becomes s0 + e, while the stablecoin reserve increases by t , i.e.,

t + c0 = C(s0 + e)
according to (5)= c0

F

√
s0 + e

s0
= c0 F

√
1 + e

s0
(6)

Rearranging (6), we get:

• the amount of stablecoins to be paid (or received when negative), t , based on the
amount of tokens to be bought (or sold when negative), e, and the outstanding
token supply s0 (Algorithm 7),

t = c0

(
F

√
1 + e

s0
− 1

)
(7)

• the amount of tokens to be bought (or sold when negative), e, based on the amount
of stablecoins to be paid (or received when negative), t , and the outstanding token
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supply s0 (Algorithm 8).

e = s0

[(
t

c0
+ 1

)F

− 1

]
(8)
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Abstract Discrete event games are discrete time dynamical systems whose state
transitions are discrete events caused by actions taken by agents within the game.
The agents’ objectives and associated decision rules need not be known to the game
designer in order to impose structure on a game’s reachable states.Mechanism design
for discrete event games is accomplished by declaring desirable invariant properties
and restricting the state transition functions to conserve these properties at every point
in time for all admissible actions and for all agents, using techniques familiar from
state-feedback control theory. Building upon these connections to control theory, a
framework is developed to equip these games with estimation properties of signals
which are private to the agents playing the game. Token bonding curves are presented
as discrete event games and numerical experiments are used to investigate their signal
processing properties with a focus on input-output response dynamics.
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1 Introduction

Cryptoeconomic systems [25] are digital data-driven multiscale, adaptive and
dynamic networks with a system-level state available to all agents. These systems
use cryptographic tokens as information carriers, allowing for economic activities to
emerge on top of a shared distributed ledger technology (DLT) enabled infrastructure
such as blockchain. Formally, these economies can be described using a state space
representation [22, 30, 31], which allows the encoding of agents, transactions and
mechanisms, as well as state transitions resulting from activities within the network.
Additional requirements on reachable system states can be imposed using configu-
ration spaces [29] to design possible future system trajectories, without assuming
agents’ decision rules or specifying agents’ preference functions. Intended design
of configuration spaces is a standard technique applied in the creation of robotic
systems to restrict possible movements of machines, see for example [19].

Understanding the formal structure of cryptoeconomic systems is facilitated using
game theory, a mathematical framework that formalizes the dynamics of multi-agent
systems within a spectrum of repeated discrete games (see e.g. [6]) on the one side
and continuous differential games (e.g. [9]) on the other side. Game theory has been
applied to cryptoeconomic systems in a variety of ways. In a DLT protocol layer, the
economics of consensus mechanisms [1] and the effects on network security [14]
have been studied using game theoretic concepts. Applications of DLT to finance,
such as portfolio diversification, have also been studied in [2].

Game-theoretic models are usually based upon a specification of the players, or
agents, and their preferences, strategy sets and associated payoffs. While standard
‘toy’models such as the discrete-time repeated prisoner’s dilemma (see e.g. [20]) and
the continuous-time conflict models (e.g. [9]) are pedagogically useful, more compli-
cated models are required for greater realism. For example, population games [21]
model strategic interactions with a large number of individually negligible agents
with an explicitly dynamic model of individual choice defined by the revision pro-
tocol of every agent. When stochastic revision opportunities arise, agents are free to
change strategies, resulting in a Markov process describing the mean dynamics of
the system. Three important classes of population games are potential games [17],
supermodular games [24] and stable games [8]. Potential games use a single global
potential function to represent all players’ incentives to change their strategies, which
adds additional structure to the game environment. An equilibrium is guaranteed to
exist, and there is a wide array of distributed learning algorithms that guarantee
convergence [16].

Learning in games [5, 7, 27] explores howaprocessmight emerge for convergence
to e.g. a Nash equilibrium from various initial conditions. Evolutionary games are
similar, focusing on the dynamics of strategy changes within a population [21].
Finally, mean field games are sequential games with a continuum of players, in
which players affect their opponents in ways that are insignificant at the individual
level but significant when aggregated [11], and evolution takes place according to a
dynamical relation [16, 26].
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Each of the above modeling paradigms possess different ‘encodings’ of space and
time, agent models, system interaction, and payoffs. But there exists a sufficiently
general notion of a game that can subsume most or all of these encodings, by inter-
preting a game as a system evolving over time based on the actions of a group of
agents. The game is then akin to the plant of a control system, and the agents as a
collection of individual controllers with private state, signals, and objectives [3]. The
design of the game is akin to the design of the system plant, to be controlled by an
a priori unknown set of controllers–the agents–and becomes a formal mechanism
design problem. We introduce such an interpretation in this work, defining discrete
event games as discrete time dynamical systems whose state transitions are discrete
events caused by actions taken by agents within the game. In this approach there are
observable and provable states of the interpreted system plant, regardless of agent
objectives, decision rules, etc. which are in general not known to the designer.

Under this interpretation, changes to the system state caused by agent actions
act as samples of their private preferences or private information. This allows one to
consider a game as an estimator that gathers information over time from amulti-agent
system [13]. The game design, then, acts to dynamically estimate useful summary
statistics of the underlying distribution of agents, even as that distribution changes
over time. If, for example, agent decision-making influences the price of an asset
(such as a cryptocurrency token), then it is the price which is estimated by the
discrete event game. In a similar fashion, the design pattern of combining discrete
event models with agent behavior and system parameter estimation also arises in
cyber-physical systems [10].

This work contributes to the existing literature in game theory, market theory
and estimation theory. It analyzes economic games played by agents on intentionally
shaped sub-spaces of the state space, namely on lower-dimensional manifolds. These
manifolds are designed to ensure that all economic activity takes place in a space
specifically shaped to reflect the conditions under which the game is intended to be
played. A configuration space ensures that these lower-dimensional manifolds have
designed characteristics and conserve invariant properties of the system. This allows
the focus to shift to the conditions and states of the game, rather than to the particular
behavior, strategies and private preferences of agents (since some properties of the
systemwill stay true regardless of the choices of its participants). The game outcome
allows the inference of system-level properties that are revealed by actions taken by
the agents, without knowing further details about their particular preferences. By
doing so, it is aggregated agent behavior that acts as a signal, estimating specific
parameters (such as prices, treated in this work).

The creation of the conditions for a digital economic game with enforced state
space restrictions described above (and expressed in further detail in [29]) is ensured
by the use of DLT, which maintains a tamper-proof universal state layer. Whether
a future state is reachable will heavily depend upon the design of the configuration
space, which can be restricted using token bonding curves to impose invariant prop-
erties upon the system and thereby limit possible system state trajectories. A more
comprehensive description of bonding curves is provided in Sect. 3, but in a nutshell
they are used as an enforceable mechanism in the market design of token economies,
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where they function as continuous liquiditymechanisms allowing agents to influence
the state. Bonding curves are most commonly used in corporate finance, financial
instrument pricing and as rights management tools. System participants will make
their decisions based on the utility gains they perceive from evaluations of expected
effects (in accordance with their private, local preferences), but will take into consid-
eration that outcomes will follow global laws of motion dictated by the ‘rules of the
game’ encoded in the shape of the space.1 A market for tokens emerges as a result of
economic activity between agents, with the token price as a variable describing one
particular global property of the system estimated from individual signals of con-
stituent agents. This observation paves the way for a possible contribution to price
theory, treating bonding curves as estimators of market prices.

The paper is structured as follows: Sect. 2 introduces the notation and definitions
required to formally represent discrete event games, configuration spaces and the
estimation framework. Section 3 reviews the characteristics of bonding curves within
the state space representation, via the configuration space and the representation’s
mechanisms. It continues with a description of the formal process of global price
estimation derived fromprivate signals of the agents. Section 4 then presents dynamic
price estimation with open loop agents, derived from numerical results for a specific
bonding curve parametrization. Finally, Sect. 5 concludes and outlines future work.

2 Notation and Definitions

2.1 Discrete Event Games

Consider a system in which agents interact within a network, the topology of which
is specified as part of a global system. Agents are decision-making entities that are
completely characterized by their state, considered as a finite vector of k elements
taken from a field. In what follows it is assumed that the field is the usual real number
line R, but this may be generalized. The state characterizes the agent insofar as it
specifies ‘private’ information known only to that agent.2

Agents are indexed by an identifier a ∈ {1, 2, 3, . . . , n < ∞}, while time t ∈ Z
≥0

is a ‘lattice’ upon which agent decisions and actions are placed. Time also indexes
the flow of information, which impacts the state of the agent. Thus, an agent’s state
may be summarized by a vector x̂a,t . Denote the agent state space by X̂a ⊆ R

k , so
that ∀a, ∀t, x̂a,t ∈ X̂a .

The agent-level state is decentralized but may nonetheless be summarized as

1Cf. [4, 15] for statistical mechanical and econophysical approaches that address this micro-meso-
macro aggregation.
2We adopt notation and conventions from the signal processing literature throughout, opting for a
unified exposition at the potential risk of cross-disciplinary “notation collision”.
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(x̂1,t , x̂2,t , . . . , x̂n,t ) ∈
n∏

a=1

X̂a ⊆ R
nk .

The network carries its own internal state, the system-level state. As the network
is assumed to be a finite (probabilistic or deterministic) state machine, the internal
state may be given by a finite vector of m elements, with (as in the agent case)
elements taken from a field. For simplicity we again assume that the field is identical
for all elements and equals R, but the approach (and future research) accommodates
arbitrary fields. The system-level state, denoted x̄t , depends upon the information
arrival process summarized by time t . The system-level state space is then a set
X̄ ⊆ R

m , so that ∀t, x̄t ∈ X̄ .
The system state xt is the state of all agents and the system-level state, i.e.

xt := (x̂1,t , x̂2,t , . . . , x̂n,t , x̄t ) ∈ X :=
n∏

a=1

X̂a × X̄ ⊆ R
nk × R

m .

We refer to X as the system or global state space.
The role of the system is to provide an ‘institutional framework’ within which

agents interact, both with each other via their network interaction, and with the
system itself as the propagator of network interaction. By ‘interaction’ we mean
that, conditional upon a system state xt at time t , an agent a may select from a menu
of actions, representing valid (or “legal”) actions that are admissible to the network.
For simplicity, we suppose that this menu of actions is represented by a mapping
U (xt , a), which is assumed to return a non-empty set at every point in time and for
all agents.3

If an agent acts at time t , they select an action ut from U (xt , a). In Sect. 3 it
will be assumed that every agent possesses a decision rule incorporating available
information and the admissible set of actions U (xt , a) at time t . The action ut does
not refer to a particular agent because of the way time operates as a ‘lattice’ for agent
decisions.4 Formally, we require

Assumption 1 Time is sufficiently finely granulated to ensure that action collisions
do not occur, i.e. all agent actions are ordered by t . �

Assumption 1 means that for every t there is one and only one corresponding action
ut , selected by an agent a from U (xt , a). While this is a formal requirement for

3It may be the case that, for agent a,

U (xt , a) ≡ U (x̂a,t , a),

i.e. the agent’s state space is sufficient to define their actions (this would be the case, for example,
in a game where every agent has their own action set, or where every agent conditions only upon
their own private information). In what follows we allow for full conditioning on xt .
4Naturally there may still be an implicit unique mapping from ut to a, as is the case with sending
Bitcoin, [30].
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what follows, in practice this assumption is reasonable because the system is a state
machine—hence events within the system arrive in discrete steps.5

The agent’s selection of an action ut changes the system state xt . The system thus
possesses a mechanism that, taking an action, transitions the system state (i.e. agent
level state and the system level state) to the next lattice point t + 1. More formally,
such a mechanism may be viewed as a transition function f , with xt+1 = f (xt , ut ).
Note that f takes values over all possible agent actions ut ∈ U (xt , a), for every
possible xt and for every a—this may be a consequence of a conservation law, which
is discussed further in Sect. 2.2 below.

Definition 1 By a discrete event game is meant the tuple (X̄ , {X̂a}na=1;U, f ), com-
prised of the agent and system level state sets, the decisionmapping for agent actions,6

and the system state transition function f .

A trajectory is a sequence of system states {xt } created by the repeated selections
of actions by agents, in response to the system state (or their private agent state, if
the system state is not fully visible to every agent). Without further restrictions it is
clear that there are infinitely many possible trajectory realizations ex ante, depending
upon the richness of the sets underlying the discrete event game. In what follows, we
demonstrate that it is possible (and usually desired) for the designer of the system to
impose additional structure that will restrict possible trajectory realizations to spaces
(such as topological manifolds) that reduce the complexity of the game’s resulting
dynamical evolution.

2.2 Configuration Spaces

In the system design process one or more quantities of interest are usually conserved,
i.e. are time-invariant over every possible global system state trajectory. A simple
example is a discrete event game in which at time t a finite resource, Yt , must
be allocated across agents. If we suppose that an agent a’s local state at t is their
allocation of this resource, then resource conservation implies

n∑

a=1

x̂a,t ≡ Yt ∀t. (1)

This is a restriction on the attainable combinations of individual agent resources that
must respect the allocation restriction.

Over time the relative allocation between agents may change, so that for some or
all agents, x̂a,t �= x̂a,t+1. But restriction (1) nevertheless holds at every t . In addition,

5While ostensibly this model assumes a strict ordering of actions, this is a consequence of the
definition of xt as a global state and f as a global mechanism. Partial orderings may suffice provided
a local state transition depends only upon information provided in the local state; see e.g. [13].
6The decision mapping defines an agent’s strategy set, which is a standard primitive defining a
game; see e.g. [6].
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there may be flows into or out of the system that cause Yt to change, where the
change �Yt is allocated to one or more agents. Such flows are common constructs
in network routing [28], crypto token allocation (such as within the original Bitcoin
protocol, see [18]) and crypto mining games (e.g. [23]), where in the latter case
there are conserved flows between agents but injections of new token supply into the
system according to predefined monetary policies.

The key implication of resource conservation, such as (1) above, is that it reduces
the dimension of allowable system trajectories—generally, there is a reduction of one
dimension for each (independent) restriction. The system designer may thus focus
upon a smaller space for realizations of the trajectory, called the configuration space
(see e.g. [29] for an introduction to configuration spaces).

The quantity (or quantities) conserved throughout the dynamical evolution of the
system can be expressed by designing conservation laws, i.e. real-valued7 functional
(linear or non-linear) relationships V : X → R where the quantity to be conserved,
such as a global state xt , satisfies V (xt ) ≡ V̄ ∈ R ∀t .

A conservation law so designed may be enforced by ensuring that the global state
transition mechanism over admissible action sets U (xt , a), ∀a, respects

V (x0) = V̄ ,

V (xt ) = V ( f (xt ; ut )) ∀t, ∀ut .

Selecting a pair (V, f ) to implement desired conservation laws is the mechanism
design problem facing the system designer. It depends crucially upon which con-
served quantities are present, as well as upon the requirements defining the kinds
of actions agents expect to be able to take. If f characterized a set of actions such
as sending cryptocurrency, and V encoded a desired invariant such as conserving
that cryptocurrency, then one could derive the necessary admissible function U by
restricting the domain of f to the preimage of the invariant set. This results in the
rule that agent a cannot send tokens exceeding its available balance.

A more general mechanism design problem characterizes the goal of the sys-
tem using performance metrics, which tell the designer—and the participants in the
system—which states (or functions of states) are considered desirable. When the
game is allocating resources it may do so to the benefit of those agents that move the
system state in a direction which improves relative to a performance metric. Framed
as such, the network itself may be viewed as an evolutionary optimization algorithm
where the agents’ local efforts to maximize payouts serve to ascend a potential field
characterized by the aforementioned performance metrics. Figure 1 shows a possible
construction of such discrete event game.

7Although we focus upon real-valued laws here because of the estimation of continuous real-valued
signals, in general finite or even infinite state machines may also characterize conservation laws.
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Fig. 1 Block Diagram for a discrete event game with estimation capabilities

2.3 Samples, Signals, and Estimation

In addition to conservation laws, there may be desirable quantities of interest that are
generated by the system as a result of agent actions {ut }. For example, the buy or sell
decisions made according to a token bonding curve will determine a realized price,
P̂t . This price is subject to noise from exogenous factors (e.g. market conditions,
off-chain supply and demand shocks, etc.), denoted by some process εt , and so will
be difficult to estimate. In general, we let ŷt represent the realized value, which is a
noisy signal of the variable of interest.

By implementing a pair (V, f ), the system designer creates an estimate yt from
noisy samples ŷt , by forcing the trajectory of realized states to admit a mapping G
carrying xt to the estimate yt . For example, a token bonding curve restricts token
demand and supply and in turn generates an estimate Pt of a hidden signal, for which
realized price P̂t is a noisy sample. In general, the sequence of samples {ŷt } depends
upon individual agent mappings, which attempt to condition upon εt and the system
state xt . This allows the local representation of yt , denoted by ya,t , to be expressed
in the form ga(xt , εt ). We interpret the mapping ga(xt , εt ) as the representation
technology of the agent. The local representation ya,t may then be used by agent
a in decision-making, i.e. there may be a further mapping carrying xt , ya,t and εt
(if separately influencing decisions apart from ga) into a decision ut from U (xt , a).
Such a mapping, although not articulated in detail here, would be a decision rule for
the agent.

There may be potential feedback between an agent’s action, ut , and the factor
influencing the signal ŷt , i.e. it may be that

∂εt

∂ut
�= 0. (2)

This is the case for the token bonding curve example presented in Sect. 3: the signal
is the actual realized token price, P̂t , which is determined by buy and sell decisions
of the agents, while the spot price Pt is determined from the conservation law V and
the same agent trading decisions.

The first-order impact of the agent’s action on the noise process εt given in (2)
implies that an observation of signal ŷt at t represents a ‘draw’ or sample from the
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underlying distribution of local agent representations ya,t . In essence, the estimate yt
is the system’s ‘best guess’ of the signal ŷt , accounting for variations in both space
(agents) and time. A performance metric that naturally suggests itself is that of an
error et such that

et = e(yt , ŷt ) := ‖yt − ŷt‖ ∀t.

The error specification allows an application of estimation theory to the analysis of
the system’s stochastic convergence, by ‘steering’ the system to achieve as low an
error as possible. Future research will also focus upon boundary conditions for the
error for a variety of signal and estimate specifications.

In practice, the more detailed the foundations of the discrete event game, and
its designed implementation of (V, f ), the easier it will be to arrive at results with
formal bounds in a chosen error metric. The cost, naturally, is the risk that viola-
tions of these more detailed modeling assumptions have the potential to undermine
conclusions drawn in this fashion. Our analysis in this sense is simply a ‘launching
point’ for a richer modeling paradigm crossing dynamic mechanism design theory
with estimation theory (see e.g. [12]).

3 Bonding Curves as Price Estimators

The token bonding curve system, in which a community token is managed using
bonding curve contracts, fits readily within the framework outlined in Sect. 2. A
representation of mechanisms and restrictions of such a game is shown in Fig. 2. The
system specifies a series of token holdings as outlined in [29], which we summarize
here.

Definition 2 The reserve Rt ∈ R++ at time t is the total quantity of reserve currency
tokens bonded to the bonding curve contract.

The reserve currency is provided by a contract external to the community deploying
the bonding curve. This could be the native cryptocurrency or tokenized fiat, such

Fig. 2 Block Diagram for a discrete event game, matching an agent-based model on a bonding
curve, including observable and unobservable estimation errors
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as a stablecoin. At time t each agent a possesses their own holding of the reserve
currency, denoted by ra,t > 0.

Definition 3 The supply St ∈ R++ at time t is the total quantity of community
tokens issued by the bonding curve contract.

The supply is the total quantity of the community token held by agents. An individual
holding sa,t of the supply is part of the local state of agent a at t .

A bonding curve may be characterized using the mechanism design process
(V, f )—in particular, it provides the mechanism f and the mappings U guaran-
teed to preserve V under f . Agents can adjust their token holdings by depositing the
reserve currency to mint new community tokens, or burn all or part of their commu-
nity token holdings to withdraw the reserve currency. Regardless, the supply St and
reserve Rt always satisfy V (Rt , St ) = constant. Furthermore, the system’s estimate
of the token price Pt = P(Rt , St ) is part of the state.

Definition 4 The spot price Pt ∈ R++ at time t is the estimate of the value of the
community token, in units of R per units of S.

Since agents can freely adjust their community token holdings via the bonding curve,
the spot price Pt may be interpreted as a dynamic estimate of the value imbued in the
token by agents with representation technology ga(xt , ε). The justification for this
claim is further borne out by the characterization of the configuration space in Sect.
3.1. Note that each agent may hold their own (private and potentially exogenous)
estimate of the value of the community token, denoted pa,t = ga(xt , ε)—this will
be discussed shortly.

Definition 5 The system-level state is x̄t := (Rt , St , Pt ) ∈ X̄ ⊂ R
3++.

We shall see shortly why X̄ is a proper subset of R3++ once token bonding curve and
supply conservation laws are taken into consideration.

Each element of the system-level state has an agent-level state counterpart, based
upon the agent community token and reserve holdings.

Definition 6 The agent-level state is x̂a,t := (ra,t , sa,t , pa,t ) ∈ X̂a ⊆ R
3++.

In what follows we suppose (although it is not strictly required) that agents can
observe the system-level state, but not each other’s agent-level states. The system
state xt exists for all t even though it is not globally observable.

Definition 7 The system state is xt = (x̂1,t , . . . x̂n,t , x̄t ) ∈ X ⊂ R
3(n+1)
++ and lies in

the Cartesian product of the system-level state and the agent-level state.

3.1 The Configuration Space

The system design incorporates both a mechanism f , which is the token bonding
curve mechanism above, and a set of conservation laws V , indicating the design
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goals that can be formulated as time-invariant quantities of interest. In the case of
the bonding curve, a system level design goal is to establish diminishing returns for
both depositing and withdrawing reserve currency from the bonding curve. This is
accomplished by restricting the relationship between R and S:

Definition 8 The bonding curve conservation function is given by

V (Rt , St ) := Sκ
t

Rt
≡ V0, (3)

where V0 = V (R0, S0) := Sκ
0
R0

is a constant defined by initial supply S0 and initial
reserve R0. Parameter κ is the curvature of the bonding curve.

Definition 8 allows us to assert that the spot price Pt is completely determined by
reserve currency and community token supply holdings and the functional form of
V 8:

Pt = P(Rt , St ) = − ∂V/∂S

∂V/∂R

∣∣∣∣
(Rt ,St )

. (4)

Definition 9 The system-level configuration space, X̄C is a 1-manifold, created
by applying two one-dimensional restrictions, V (Rt , St ) = V0 and Pt = P(Rt , St )
to the three-dimensional state space X̄ :

X̄C := {x̄ = (Rt , St , Pt ) ∈ X̄ | V (Rt , St ) = V0, Pt = P(Rt , St )} ⊂ X̄ . (5)

In addition to the system level design goal, there is also a local conservation restric-
tion. For the community token supply, the total agent holdings at time t cannot exceed
the available supply. Letting st denote the vector of community tokens held by all
agents (s1,t , . . . , sn,t ), we have

VS(st , St ) :=
n∑

a=1

sa,t − St ≡ 0. (6)

Definition 10 The agent-level configuration space, X̂C is a (3n − 1)-manifold,
createdbyenforcing the conservation constraintVS(st , St ) = 0on the3n-dimensional
agent-level state space

∏
a X̂a :

X̂C := {{(ra,t , sat , pa,t ) ∈ Xa}na=1 |
n∑

a=1

sa,t = St } ⊂ X̂ . (7)

Note that there is also an inherent asymmetry between the reserve currency and
the community token. Community tokens cannot be introduced or removed without

8Cf. Proposition 1 of [29] for a proof of this assertion.
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doing so through the bonding curve, meaning that community tokens are internal
to the system. By contrast, the reserve currency can be introduced to or removed
from the system without recourse to an internal mechanism—although the reserve
currency is assumed to be globally conserved (when considering its holdings outside
of the system), it is not locally conserved and is thus external to the system. The
bonding curve then takes the role of interface between the two value systems, with
one broader in scope (where the reserve currency originates) and one narrower in
scope (where the specialized community token is used).

Definition 11 The configuration space,XC is a 3n-manifold, which is theCartesian
product of the system-level and agent-level configuration spaces.

XC := X̂C × X̄C ⊂ X = R
3n+3
++ (8)

3.2 Mechanisms

In order to arrive at the laws of motion for the system, it is necessary to characterize
the specific bonding curve mechanisms for reserve currency and community token
dynamics. In addition, we include a specification of admissible agent actions, to
close the feedbackmechanism between these actions and the resulting realized signal
process. We continue to use [29] as our framework in what follows.

Definition 12 The Bond-to-Mint mechanism takes a system-level state x̄t =
(Rt , St , Pt ) and an agent a’s action, given by a bonded quantity �Rt := ra,t −
ra,t+1 ≥ 0 such that ra,t+1 ∈ R++. Quantity �Rt is reserve currency transferred to
the bonding curve, and returns the state xt+1 such that

(Rt+1, St+1, Pt+1) =
(
Rt + �Rt ,

κ
√
V0(Rt + �Rt ),

κ(Rt + �Rt )
κ
√
V0(Rt + �Rt )

)

and the associated updates to the agent-level state x̂a,t are given by,

(ra,t+1, sa,t+1, pa,t+1) =
(
rt − �Rt , sa,t + κ

√
V0(Rt + �Rt ), ga(xt+1, εt )

)

and (ra′,t+1, sa′,t+1, pa′,t+1) = (ra′,t , sa′,t , ga′(xt+1, εt ) for all agents a′ �= a where ga
is a private mapping for agent a and εt is an exogenous signal.

Definition 13 The Burn-to-Withdraw mechanism takes a system-level state x̄t =
(Rt , St , Pt ) and an agenta’s action, given by a burnedquantity�St := sa,t+1 − sa,t ≤
0 such that sa,t+1 ∈ R++. Quantity �St is token supply removed from the system,
and results in the state xt+1 such that

(Rt+1, St+1, Pt+1) =
(

(St + �St )κ

V0
, St + �St ,

κ(St + �St )κ

V0(St + �St )

)
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Fig. 3 An agent’s view of their admissible actions given by the bonding curve

and the associated updates to the agent-level state x̂a,t are given by,

(ra,t+1, sa,t+1, pa,t+1) =
(
ra,t + Rt − (St + �St )κ

V0
, sa,t + �St , ga(xt+1, εt )

)

and (ra′,t+1, sa′,t+1, pa′,t+1) = (ra′,t , sa′,t , ga′(xt+1, εt ) for all agents a′ �= a where ga
is a private mapping for agent a and εt is an exogenous signal.

Given these mechanisms, an agent’s action setU (xt , a) can be fully determined from
both agent-level restrictions and system-level conservation laws (see also Fig. 3 for
a visualisation of the agent’s perspective):

Definition 14 An action ut := (�Rt ,�St ) is admissible if at time t :

ut ∈ U (xt , a) := Û (xt , a) ∩ Ū (xt ) ∀t,

for agent a, where the agent-level admissibility condition is:

Û (xt , a) = {(�Rt ,�St ) ∈ R
2 | (ra,t − �Rt , sa,t + �St ) ∈ R

2
++}

and the the system-level admissibility condition is

Ū (xt ) = {(�Rt ,�St ) ∈ R
2 | (Rt + �Rt , St + �St ) ∈ R

2
++,

V (Rt + �Rt , St + �St ) = V (Rt , St )}.
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3.3 Price Estimation

The bonding curve system is presented with a sequence of observations associated
with the actions ut = (�R,�S), from which sample prices P̂t = �R

�S , referred to
as realized prices, are computed. Due to the restrictions U (xt , a) on admissible
actions, P̂t is not necessarily a true sample of pa,t = ga(xt , εt ) for the active agent
a. Assuming agent a is acting at time t and that the mapping ga accounts for any
private signals and utility functions (including discounting), the sample price P̂t may
be interpreted as arising from an agent level constrained optimization, for example:

ut = arg min
(�R,�S)∈U (xt ,a)

‖�S ga,t (xt , εt ) − �R‖. (9)

Due to the dimensional restrictions in the configuration space, the admissible ut for
agent a lies within an open interval embedded in the plane (ra, sa), as shown in Fig.
3. It suffices for agent a to search this interval for their preferred posterior state, and
to choose ut = (ra,t − ra,t+1, sa,t+1 − sa,t ) accordingly. Whether or not ut is treated
as a strategic action, as in (9), the curvature κ > 1, implies that every point in the
open intervalU (xt , a) is uniquely characterized by the price P̂t = �R

�S . Furthermore,

the estimator Pt = G(xt ) = κ Rt
St
is a critical point where P̂t > Pt will always call for

burning, and P̂t < Pt will always call for bonding (see [29], Lemmas 1 and 2). Also
from [29], the posterior spot price always decreases for burn actions, and always
increases for bond actions. Thus it is guaranteed that the update directions match,
that is (Pt+1 − Pt )(P̂t − Pt ) ≥ 0 when any agent a takes an action ut at time t .

Combining this machinery with the assumption that agents act directionally
aligned with their preferences (ga(xt , εt ) − Pt )(P̂t − Pt ) > 0, the groundwork is
laid for deriving estimation error bounds of the form ‖ga(xt , εt ) − G(xt )‖ = ‖pa,t −
Pt‖ ≤ ξ‖P̂t − Pt‖ ∀a∀t , with minimal assumptions regarding the agents. As a first
stepwe proceed next to computational experiments, which test the input-out response
dynamics of the bonding curve system visualized in Fig. 4; in particular we com-
pare the estimator Pt to sample sequences P̂t and the associated (unique) actions
ut ∈ Ū (xt ). Estimation error is given by et = ‖P̂t − Pt‖∀t .

Fig. 4 Block Diagram representation of the input-output response dynamics for the bonding curve,
viewed as an price estimator
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4 Price Estimator Response Dynamics

Consider a sequence of realized prices P̂t ; for any prior system-level state x̄t , there
is a unique ut = (�Rt ,�St ) satisfying �St P̂t = �Rt provided that P̂t > Rt/St .
The price Rt/St , also called the floor price, is the ratio of reserve-to-supply, and
represents the realized price of liquidating the bonding curve at any time t . It thus
acts as a lower bound for all realized prices P̂t . By restricting attention to the sequence
P̂t , it is possible to analyze the signal processing properties of the bonding curve using
only the system-level trajectory x̄t .

Definition 15 The driving process P generates a sequence of price samples P̂t
satisfying the condition that P̂t > Rt

St
for all t .

The input-output response dynamics of the bonding curve system are constructed by
comparing the inputs P̂t to the outputs Pt for deterministic wave-forms as well as
non-deterministic input signals P̂t , given a particular characterizations of the bonding
curve discrete event game.

4.1 Experimental Apparatus

To illustrate the impact on Pt of different driving processes, three deterministic
signals are defined: a Square-Wave, a Triangle-Wave and a Sine-Wave. To capture
stochastic effects, a Martingale stochastic process is also introduced. These simple
signals most commonly used in basic estimation experiments abstract away from
the complexity of possible inputs P̂t , while simultaneously acting as a starting point
for the analysis of a broad range of feedback mechanisms caused by a closed-loop
game. The deterministic signals can be characterized by wavelength λ, amplitude A
and phase φ, for time t ∈ {0, . . . 4000}, and are described using the functional forms
in Table 1. The apparatus supports testing across a range frequencies λ, magnitudes
A and phase shifts φ in accordance with best practices [12].

Our experiments use the bonding curvature parameter κ = 2 and the system is
initialized with a community token supply S0 = 1000000 and reserve currency units
R0 = 50000, resulting in an initial price P0 = 0.10 reserve units per token and an
invariant V̄ = V0 = 20000000. The deterministic driving functions are taken with
φ = 0, B = P0 and λ = 2000. Amplitude A takes values P0

2 ,
P0
100 , and

P0
2 for the

Square-Wave, Triangle-Wave and Sine-Wave, respectively. For the Random Walk,
an initial condition P̂0 = P0 is applied, and the percent change in P̂0 is drawn
from a Gaussian distribution with mean μ = 0 and variance σ = 0.05. Addition-
ally, 10× 10-run Monte Carlo experiments were executed for the Martingale case,
generating 10 runs for each σ ∈ {0.1/2K |K = 1, . . . 10}.9

9These reflect a sampling of the permissible values of σ—a more detailed analysis is relegated to
future research.
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Table 1 Driving process functional forms for numerical experiments

Waveform Driving process P Restriction

Square-Wave P̂t (t, λ, A, φ)

= B + A 1{((t−φ) mod λ)<λ/2}
B > A

Triangle-Wave P̂t (t, λ, A) = B +
2A
λ

∣∣((t − φ) mod λ) − λ
2

∣∣ −
2A
4

B > 2A
λ

Sine-Wave P̂t (t, λ, A, φ)

= B + A sin
(
2π t−φ

λ

) B > A

Random Walk P̂t (t, μ, σ ) = (1 + δt )P̂t−1
where δt ∼ N (μ, σ )

μ = 0

4.2 Numerical Results

The Square-Wave response in Fig. 5a shows that the step response is tightly tuned,
resulting in a largeovershoot but remaining stable, oscillating and convergingquickly.
This behavior is characteristic of a high gain proportional controller. The Triangle-
Wave (Fig. 5b) and Sine-Wave (Fig. 5c) signals are equally reminiscent of such a
controller; the Triangle-Wave exhibits steady state error during the ramp and the
Sine-Wave tracks most closely at the peaks and troughs. In the Random Walk case
(Fig. 5d) tracking behavior is observed, but the error radius appears large. Despite
the high frequency noise, the error does not appear to accumulate, and does appear
to remain within a ball roughly on the order of 3σ (Fig. 5e), likely an artifact of the

random walk whereby �P̂t
P̂t

∼ N (0, σ ) for all t .

(a) Square-Wave (b) Triangle-Wave (c) Sine-Wave

(d) Random Walk (e) Repeated Martingale Param Sweep

Fig. 5 Summary of response dynamics and estimation error for the experiments in Sect. 4.1. Single
trajectories are shown for (a) to (d) while (e) shows the distribution of relative estimation errors for
various σ -variance Martingales (d)
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5 Conclusions and Future Work

The novel equipment provided by dynamic games is the system-level state, and the
ability to define and enforce a configuration space that is a proper subset of the state
space using mechanism design techniques related to state feedback control. Apply-
ing estimation and control-theoretic principles to token bonding curves, analytical
groundwork was developed to characterize the relationship between realized prices
and spot prices, as well as to posit an estimation bound relating the spot price and the
agents’ hidden preferences. Numerical experiments demonstrated the signal process-
ing characteristics of the bonding curve, and provide further evidence that expanding
the discrete event gamemachinery and its associated estimation capabilities will pro-
vide new tools for practical mechanism design, with a focus on cryptoeconomic and
cyber-physical systems.
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Promise: Leveraging Future Gains
for Collateral Reduction

Dominik Harz, Lewis Gudgeon, Rami Khalil, and Alexei Zamyatin

Abstract Collateral employed in cryptoeconomicprotocols protects against themis-
behavior of economically rational agents, compensating honest users for damages
and punishing misbehaving parties. The introduction of collateral, however, carries
three disadvantages: (i) requiring agents to lock up substantial amount of collat-
eral can be an entry barrier, limiting the set of candidates to wealthy agents; (ii)
affected agents incur ongoing opportunity costs as the collateral cannot be utilized
elsewhere; and (iii) users wishing to interact with an agent on a frequent basis (e.g.,
with a service provider to facilitate second-layer payments), have to ensure the cor-
rectness of each interaction individually instead of subscribing to a service period in
which interactions are secured by the underlying collateral. We present Promise, a
subscription mechanism to decrease the initial capital requirements of economically
rational service providers in cryptoeconomic protocols. The mechanism leverages
future income (such as service fees) prepaid by users to reduce the collateral actively
locked up by service providers, while sustaining secure operation of the protocol.
Promise is applicable in the context of multiple service providers competing for
users. We provide a model for evaluating its effectiveness and argue its security.
Demonstrating Promise’s applicability, we discuss how Promise can be integrated
into a cross-chain interoperability protocol, XCLAIM, and a second-layer scaling
protocol, NOCUST. Last, we present an implementation of the protocol on Ethereum
showing that all functions of the protocol can be implemented in constant time com-
plexity and Promise only adds USD 0.05 for a setup per user and service provider
and USD 0.01 per service delivery during the subscription period.
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1 Introduction

Since their creation, arguably the most significant property of blockchains is their
facilitation of trustless exchange between entities with weak identities [8]. Yet the
trustless nature of the systems means not only that partiesmay transact without trust-
ing each other, but also that they should not trust each other. This creates a design
challenge for interactions which would typically involve such trust. In this paper,
we focus on blockchain protocols which, at least in part, encode trust by monetary
collateral. Here, collateral is value escrowed by a service provider, Alice, to guaran-
tee the user, Bob, that regardless of the behavior of Alice, Bob cannot lose funds. In
particular, payment, cross-chain, and generic computation protocols can be designed
such that Bob is guaranteed to receive from Alice at least the amount of funds that
are at risk in case she misbehaves. Protocols involving collateral include cross-chain
communication [21], scalable off-chain payments [15], state channels [11], watch-
towers [4, 5, 16], and outsourcing of computation and verification games [20].

Problem. Relying on collateral as trust is itself associated with a set of challenges.
Collateralization requires the provision of a substantial amount of funds upon proto-
col initialization, limiting the set of participants to a selected few. Leaving participa-
tion to a small set of agents can lead to phenomena like the “rich are getting richer”
through wealth compounding [12]. While it is not possible to grant less wealthy
agents proportionally higher rewards due to Sybil identities [9], we can lower the
entry barrier for agents to join a protocol. Finally, locked funds result in opportunity
costs for the agent who could use their collateral for participating in other proto-
cols [14].

This work. We present Promise, a simple but effective mechanism to lower entry
barriers for intermediaries in protocols relying on collateral for secure operation.
Further, Promise is a subscription mechanism: Instead of locking up a significant
amount of funds as collateral, Promise allows intermediaries to stake future pay-
ments (e.g., service fees) with the promise the payments will be disbursed upon the
correctly provision of the service. Similar to online platforms, users can choose to
subscribe to a service and pay fees upfront—for a some pre-agreed service period
(the “subscription period”). However, instead of transferring these payments directly
to the intermediary, users lock pre-paid fees in an escrow smart contact, preventing
theft by either party. The intermediary needs to provide the service honestly for the
entire period set by the user. The benefit of this scheme is two-fold: (i) the interme-
diary is incentivized to act honestly while enjoying a lower initial collateral, and (ii)
the user can reduce his transaction cost and only pays if the service was provided
honestly over his defined period. As long as (i) the initial collateral is higher than
the potential gain from not delivering the service, (ii) the expected future revenue
from correct operation exceeds potential gains by the intermediary, (iii) users have
the option to leave the protocol, (iv) and misbehavior can be proved to the smart
contract, Promise incentivizes correct behavior.
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Application. We discuss how Promise can be applied to XCLAIM and NOCUST.
Both protocols are suitable candidates for Promise, as in both protocols “service
providers” are a necessary part. XCLAIM is a cross-chain protocol that allows cre-
ation of Cryptocurrency-backed Assets (CbA) on an issuing blockchain enabled by
a collateralized third-party called a vault [21]. Vaults provide collateral on the issu-
ing blockchain to ensure that it is not economically rational for them to steal the
locked cryptocurrency on the backing blockchain. NOCUST is a commit-chain pro-
tocol that allows to send cryptocurrency payments off-chain facilitated by so-called
operators [15]. Operators are service-providing agents that (i) collect fees for operat-
ing the off-chain payment network, and (ii) provide a certain amount of collateral to
insure finalization of payments. Both, vaults and operators are service providers from
the perspective of Promise: (i) any agent can become a service provider by locking a
certain amount of collateral, and (ii) agents can earn fees by providing their services.
Moreover, we show that the implementation of Promise in an Ethereum Solidity
smart contract only adds USD 0.03 to setup Promise between a user and a service
provider, USD 0.01 to provide the deposit for the service provider and USD 0.01 to
provide the pre-payment. During the subscription period, each delivery of the service
adds a cost of USD 0.01. Finally, the withdrawal of both deposit and accumulated
payments adds USD 0.01 for the service provider.

Outline. We introduce the system model and assumptions in Sect. 2, followed by a
description of Promise in Sect. 3. Next, we discuss the security of Promise and argue
in which cases Promise can provide benefits to users and intermediaries in Sect. 4.
Also, we present how Promise can be applied to existing systems in Sect. 5. We
discuss related work in Sect. 6 and conclude in Sect. 7.

2 System Model

In Promise, a user Bob engages a service provider Alice to fulfill a task valued at
VB on his behalf. Bob pays Alice p each period t for performing the task. Given
the absence of strong identities, the total value of the task to Bob (VB) needs to be
fully collateralized, via a deposit D, such that D ≥ VB . For example, if a particular
task involves Alice offering a service and Bob having a $100 exposure—in the form
of counter-party risk—to Alice, Alice will need to post at least $100 as collateral
to insure the exposure, such that Bob does not stand to lose funds if Alice behaves
maliciously.

Formally, we adopt the definitions of agreementsA in cryptoeconomic protocols
from [14]. The service providing agent Alice A and the receiving agent Bob B
participate in an agreement encoded by a specification Φ, payments p and a deposit
D. In such an agreement, Alice needs to fulfill the specification Φ and provide the
collateral D in advance. When Alice fulfills the specification, all future payments p
held in escrow are released to Alice.
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Table 1 Symbols used in Promise

Symbol Description

Vi Total value of a task to agent i

D A monetary deposit

A An agreement reached between a service provider and a user

Φ A protocol specification, specifying the task for the service provider
and the required proof that the task has been performed

p Payment held in escrow and released to the providing agent on
fulfillment of the agreement

m The number of future periods

π A generic cryptoeconomic protocol

c The cost of an individual transaction

E[r ] The expected rate of return

ui (t) The utility of agent i at time t

β The likelihood that the user remains in the protocol

n The number of times Alice did not deliver the service

δ Discount factor for future utility

Promise is a mechanism to reduce initial collateral locking. However, Promise
is not meant as a stand-alone protocol, but rather, serves as a “plug-in” to existing
cryptoeconomic protocols. Given a generic cryptoeconomic protocol π that satisfies
the assumptions of Sect. 2.3, we can apply Promise and write the protocol as πP.
We note that the agreement A is given by the generic protocol π . We assume that
Alice and Bob have entered into agreement A and have agreed on the specification
Φ, payments p, and the deposit D.

We give a summary of symbols in Table 1.

2.1 Specifications

The specification Φ describes the task that Alice needs to provide and the pf that
serves as evidence that the task has been provided. There are several approaches to
encode the specification. In the BitML calculus [6], a specification consists of (i) a
model describing a contract and agent choices symbolically and (ii) amodel encoding
a sequence of transactions that form a smart contract in Bitcoin computationally. For
example, Alice can deliver a digital good to Bob in return for a payment. The contract
would then specify that if Bob receives the good, payment to Alice is being made.
Specifications are also useful when exchanging digital goods with the FairSwap
protocol [10]. In FairSwap, Alice sends a digital good to Bob and provides proof of
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sending by providing a witness (hashes of the transferred data) to a smart contract as
proof. The specification in FairSwap is encoded as a boolean circuit that evaluates
whether the provided witness (the hash) satisfies the specification. In case the circuit
evaluates to true, Alice is paid for delivering the data.

Expressing the specification abstractly gives us the freedom to leave the encoding
and implementation up to the protocol that integrateswith Promise. For the remainder
of the model for Promise, we assume the specification can either be fulfilled, i.e.,
Φ = 1 or not, i.e., Φ = 0.

2.2 Roles

Promise adopts the BAR model of rational agents [2] including private preferences
of agents as proposed in [14]. We define the following roles.

• Alice, the Intermediary: Alice is economically rational and entrusted with execut-
ing a task. She provides a deposit D into the escrow before executing the task and
receives m payments p upon successful completion. Alice prefers to adhere to the
specification Φ if her utility for doing so is greater than other action choices.

• Bob, the User: Bob represents the user requesting execution of a task by Alice. A
user provides payments {p1, . . . , pm} into the escrow. The user is assumed to be
honest and correctly reports behavior of Alice.

• Escrow: The escrow is a smart contract responsible for holding deposits by Alice
and payments by Bob.

• Verifier: The verifier detects malicious behavior of Alice. In practice, this role is
fulfilled by a smart contract, a dedicated third party, or the user.

2.3 Assumptions

The verifier in the system is able to detect any faults by Alice and is able to prove
that Alice was at fault. This means, that the specification Φ of the protocol π has
some “proof”. For example, this could be the hash input of a boolean circuit as in
FairSwap, a transaction inclusion proof as required byXCLAIM, or fraud-proofs [3].

We further assume that the protocol utilizing Promise implements payments and
deposits through a ledger functionality (e.g., as described in [13]). Also, there is a
one to one mapping between the collateral and a user, such that the collateral of
an intermediary is not split between multiple users. Agents in the system can be
identified with their public/private key pair. Finally, time is denoted with t .
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2.4 Utilities

In ourmodel, we assume that agents are economically rational and self-interested. An
agent will therefore decide on a course of action depending on the utility associated
with those actions. We use a simplified model here, were the intermediary Alice
can choose between two actions and Bob has no choice once he committed to the
agreement A.

Alice can either fulfill the specification or not, with the following payoffs one
period ahead. VA denotes the additional monetary gain that Alice expects to receive if
she chooses to deviate from the protocol, where VA ≥ 0.We only include a valuation
on the malicious side to Alice as Alice could be bribed to violate the specification.
This is a worst case assumption: Alice can only be influenced by increasing her
incentive to misbehave. While we could also include a positive valuation for honest
behavior, this would not strengthen our security assumptions.

VB denotes the monetary value that Bob attaches to receiving the service. Note
that we assume private information: Bob does not know Alice’s private valuation
VA, and Alice does not know Bob’s valuation of the service VB .

Last, c denotes the cost of an individual transaction. E[r ]D reflects the expected
opportunity cost of locking the capital for one period where E[ ] denotes an expected
value and r is a rate of return. The rate of return indicates the potential interest an
agent could earn by participating in another protocol. For example, instead of locking
D in the protocol, Alice could trade D, lock D in staking [12] or lending [1] protocols
to earn an interest.

uA =
{
p − E[r ]D, ifΦ = 1

VA − E[r ]D − D, ifΦ = 0
(1)

uB =
{
VB − p − c, ifΦ = 1

D − VB − c, ifΦ = 0
(2)

Each round the game resets. Therefore, Alice fulfills the specification iff

p > VA − D (3)

Assuming that VB − p − c > 0, otherwise Bob would not seek the service from
Alice in the first place, he stands to gain utility if Alice provides the service.

2.5 Security

Following the rational agents assumptions and the utility definitions in Eqs. (1) and
(2), we define a secure cryptoeconomic protocol as follows.
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Definition 1 (Security) Assuming rational service provider A with a private valua-
tion VA, a cryptoeconomic protocol π implementing a specification Φ is secure if
A’s utility uA for fulfilling the specification Φ is higher than her utility for violating
the specification Φ, i.e., p > VA − D.

In the following, we introduce Promise in detail. We use Definition 1 to show that
integrating Promise into a generic protocol π does not affect its security. The core
proof is to show that π and πP are equivalent with respect to their security.

3 Promise

In Promise we allow Bob to provide multiple payments in advance and delay the
receipt of the payments by Alice. In turn, Alice is able to reduce the initially provided
collateral from D to DI such that DI < D. At t = 0, Bob is able to lockm payments
{p1, . . . , pm} in escrow and determine a period τ after which Alice can receive the
payments. When t < τ , Alice continues to accumulate collateral as time passes by
keeping the cumulative total of her payments pi in escrow. We provide an intuition
in Fig. 1. Promise has the following advantages for Alice and Bob.

Alice: the barrier to entry as an intermediary is lowered, as in the first period Alice
only needs to provide a lower initial deposit DI as opposed to D. Further, instead
of expecting a single next payment p, Alice has, in expectation, p · m payments
lined up as part of Bob’s subscription to her services.

Bob: the aggregation of multiple payments allows Bob to reduce transaction costs
and guarantees Bob that he only pays Alice if she fulfills all tasks for the given
period m.

Fig. 1 Promise allows intermediaries (Alice) to lock less initial deposit DI and use payments pi
provided by users (Bob) as additional deposit. The initial deposit and payments are locked until time
m determined by Bob. Only when Alice fulfills the specification Φ until t = m can Alice withdraw
her initial deposit DI and the total payments pm
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3.1 Protocol

The Promise protocol consists of three steps. We denote the service provider as A,
the user as B, and the smart contract implementing Promise as P. We assume that
A and B have agreed the total payment and the period over which the payment is
to-be-paid in advance.

1. At t = 0: B locks m payments in P. A locks the initial deposit DI in P.
2. At t = {1, . . . ,m}: A provides m times the agreed task to B. P allocates one

payment p to A, if (i) A provides a proof to P that fulfills the specification Φ,
or (ii) B does not provide a fraud proof that A did not provide the task within a
determined time [3].

3. At t = m: A withdraws p(m + 1) and DI from P.

To argue about the security of Promise, we introduce two concepts: (i) sequential-
games with discounting and (ii) a likelihood of users exiting the system upon the
service provider not adhering to the specification of the agreement.

3.2 Sequential Games and Discounting

Introducing Promise transforms the single-shot game of the agreement betweenAlice
and Bob into a sequential-round game. Instead of Alice and Bob treating each game
in isolation, they need to consider the utilities for the sequence m of the game.

Without Promise, at each round t , Alice decides if she prefers to fulfill the speci-
fication based on the utilities denoted by Eqs. (1) and (2).

With Promise, Alice needs to consider that if she does not adhere to Φ in any
round t , she does not receive any of the payments. For example, if Alice provided
the services according to Φ for n rounds, but fails to do so in a round t < m, she
does not receive pn payments, but rather looses DI and receives zero payments.

Hence, Alice’s decision needs to account for all p · m payments. Furthermore,
payments are made in the future. A promised payment in the future is less valuable to
Alice today, which we denoted with the parameter δ. 0 < δ < 1 denotes the discount
factor of an agent’s valuation of future utility. We argue that an agent can spend
received payments somewhere else or potentially invest the payment for a profit.
Hence, the service provider faces an opportunity cost for delayed payments. The
payoffs to Alice, if she follows the same course of action over every round, are as
follows.

uA(t) =
⎧⎨
⎩

∑m−1
t=0

(
δ

1+r

)t
(p − (t + 1)E[r ]p − E[r ]DI ), ifΦ = 1∑m−1

t=0

(
δ

1+r

)t
(VA − E[r ]DI − DI ), ifΦ = 0

(4)

Bob receives the following pay-off, depending on Alice’s behavior.
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uB(t) =
⎧⎨
⎩

∑m−1
t=0

(
δ

1+r

)t
(VB − p − c − (m − t)E[r ]p), ifΦ = 1∑m−1

t=0

(
δ

1+r

)t
(DI − VB − c), ifΦ = 0

(5)

3.3 Termination Probability

Lowering Alice’s initial collateral to DI increases the risk of Alice not fulfilling the
specification of the agreement. Specifically, in the first round, Alice’s collateral is
the lowest since she has not provided the service yet and has not added any payment
into her collateral pool.

We argue that Bob exits a protocol after Alice not adhering to Φ, encoded in the
function β(n) → [0, 1) describing the likelihood that Bob remains in the protocol.
The variable n describes the number of times Bob tolerates Alice not delivering the
service. Each time Bob does not received VB due to Alice not providing the service
as agreed, the lower the probability that Bob continues to participate. Each user can
have its own β(n) function where users might choose to never participate with a
service provider again, i.e., β(1) = 0 and others might tolerate a higher number of
incidents. This changes Alice’s pay-off for the protocol as follows.

uA(t) =
⎧⎨
⎩

∑m−1
t=0

(
δ

1+r

)t
(p − (t + 1)E[r ]p − E[r ]DI ), ifΦ = 1∑m−1

t=0

(
δ

1+r

)t
(β(n)VA − E[r ]DI − DI ), ifΦ = 0

(6)

As β decreases, the payoff to Alice can become negative for not fulfilling the
specification if β(n)VI < E[r ]DI − D. For Alice, we increase the motivation to
follow the specification by (i) providing a sum of payments pm that Bob locks in
the protocol, and (ii) the fear of Bob leaving the protocol altogether if she does not
provide the service the entire period. As Bob chooses m, he has a direct influence
on Alice’s expected pay-off. By setting large m and being able to quit the protocol
upon Alice’s misbehavior, he can motivate “rational Alice” to act in his interest.

4 Analysis

The core argument of Promise is that by lockingmultiple payments, service providers
can reduce their initial collateral. Specifically, introducing Promise to a protocol π ,
does not increase the incentive for an intermediary A to not adhere to the specifi-
cation. This means that πP and π are equivalent in terms of security considering an
economically rational intermediary A under Definition 1. More formally, we state
that:
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Theorem 1 (Security equivalence) Given a protocol π that has a verifiable specifi-
cation Φ and an economically rational service provider A that provides more initial
collateral DI than an incentive VA to violate the specification, introducing Promise
is secure if A does not gain additional utility by not fulfilling the specification con-
sidering A participates in at least two rounds in π .

4.1 Action Choices

Alice’s utility for choosing a specific course of action, i.e., fulfilling versus not
fulfilling the specification, is given by Eq. (6). However, this makes an implicit
assumption: Alice considers the entire period m as a basis for her decision. We
depict her added utilities for an example of two rounds in Fig. 2.

Showing that Theorem 1 holds, requires considering that Alice might not par-
ticipate for m rounds. Specifically, Alice might still consider the agreement as a
single-shot game with a decision horizon of exactly one round. Following this, we
can use m = 1 and Eq. (4) to conclude that Alice prefers to fulfill the specification
if:

p − E[r ]p > β(n)VA − DI (7)

Collateral Condition Comparing Alice’s decision without Promise in Eq. (3) and her
decision with Promise in Eq. (7) without considering β clearly shows that if Alice
only considers a single round, introducing Promise weakens the security of π as
Alice is not paid immediately and the initial collateral is reduced. Moreover, even if
Alice considers multiple rounds, if Eq. (7) does not hold, Alice has a higher utility

t = 0 t = 1 t = 2
p− E[r]p− E[r]DI

∑1
0(

δ
1+r

)t(p− E[r]p− E[r]DI)

−E[r]p− E[r]DI + ( δ
1+r

)(VA − E[rDI ]−DI)

VA − E[rDI ]−DI

Fig. 2 Depicting the sum of utilities depending on different action choices made by Alice. At
t = 0 Alice can choose between fulfilling the specification and receive the utility depicted in blue
or choose the opposite and receive the utility depicted in red. If Alice at any point prefers to violate
the specification, the game restarts and the action choices are essentially back to the t = 0 state.
Furthermore, at t = 1, Alice will already have committed to adhering to the specification. In case
Alice decides to misbehave at this point, she will not receive p that she was allocated when she
transitioned to t1. However, if she decides to continue to fulfill the specification, shewill be rewarded
with an additional payment allocation. This game continues until t = m
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to not fulfill the specification if Bob is willing to continue to enter into agreements
with her. Even worse, if Bob decides to continue using the protocol π and black-lists
Alice for her violating Φ, Bob still might end up with a Sybil identity of Alice.
Hence, for Promise to not weaken security the initial collateral needs to be set above
β(n)VA − p + E[r ]p.

In practice, this is achieved by over-collateralization or state-reversal. Over-
collateralization is used in XCLAIM where a vault has to provide 200% collateral
of the value it stands to obtain by violating the specification. In NOCUST and, gen-
erally, payment channel networks, participants are not able to steal funds, since an
older state can be committed that reverses the stealing of funds.

4.2 Security Proof

Proof Under the assumption that A is economically rational, wants to participate in
at least two rounds, e.g. t > 0, and Eq. (7) holds, we prove that πP is secure. If Eq. (7)
holds, Alice should fulfill the specification in the first round. We now show that if
this holds, Alice should continue with the same course of actions in any subsequent
round t ∈ m. 0375+ If if at any point k ∈ m, Alice decides to stop adhering to the
specification she will receive the following pay-off:

uA(t, k) =
k−1∑
t=0

( δ

1 + r

)t
(−(t + 1)E[r ]p − E[r ]DI ) +

( δ

1 + r

)t
(β(n)VA − E[r ]DI − DI )

(8)

Alice has locked her collateral DI for multiple rounds as well as the payments she
should have received. Due to her actions she gains VA but for each round she has
locked more payments and collateral, the higher her cost to change her choices of
action w.r.t. the specification. Moreover, if Alice plans to participate in multiple
rounds, she stands to decrease her probability to provide services for other users
depending on β. Hence, assuming Alice is economically rational, Alice has the
highest pay-off when fulfilling the specification until she has completed the service
within the entire subscription period m, i.e., it is incentive compatible.

4.3 Cost Reduction for Service Providers

Service providers can reduce their initial collateral to the lower bound under the
condition of Eq. (7). From this equation, we can determine the reduction if Alice
only considers a single round of the game. We express DI as D − ρ where ρ is the
reduction of the initial collateral and solve for ρ This yields:



154 D. Harz et al.

ρ = p − E[r ]p + D − β(n)VA (9)

However, ifwe consider thatAlicewants to participate inm rounds,we can express
this based on Eq. (6) and solving for ρ. However, we argue that under the assumption
of Eq. (7), Alice’s decision is essentially between participating a single round and
not fulfilling the specification, or participating multiple rounds over the pre-agreed
period m while adhering to the specification. To calculate Alice’s decision bound,
we are assuming that from Eq. (9) the first reduction is set to the lowest possible
value. This means that the term β(n)VA − p + E[r ]p − DI = 0, i.e., at the decision
bound Alice is undecided if she should fulfill the specification since the utilities for
both choices are equal. Thus, ρ can be expressed as:

ρ =
m−1∑
t=0

( δ

1 + r

)t
(p − (t + 1)E[r ]p − E[r ]D) (10)

In Sect. 5.1we give an example how collateral is lowered given a set of parameters.
Note that to calculate the collateral reduction, both the service provider and the user
only need to know the prior collateral requirement D as defined by π . For example,
in XCLAIM this is 200%.

4.4 Cost Reduction for Users

Assume that Alice behaves honestly. If a user pays every round t for the service
provided by Alice, then his pay-off per round is VB − p − c as described in Eq. (2).
However, locking multiple payments incurs opportunity cost. This cost is lowered
at every time step as the payments are assigned to the intermediary, as expressed in
Eq. (5).

Bob starts with an opportunity cost of E[r ]pm at t = 0. The opportunity cost is
reduced to E[r ]p(m − 1) at t = 1 as the payment is allocated to Alice. Generalizing
this for t rounds, leaves us with E[r ]p(m − t) at every time step t from today’s
perspective.

The user locks future payments when the sum of the transaction costs c for m
payments is greater than the opportunity cost for locking additional payments plus
the single transaction cost for making the prepayments. Hence, the boundary for
a user to choose Promise as individually rational choice maximizing his pay-off is
given by:

m∑
t=1

( δ

1 + r

)t
c =

m∑
t=0

( δ

1 + r

)t
E[r ]p(m − t) (11)

c = E[r ]p(m − t) (12)



Promise: Leveraging Future Gains for Collateral Reduction 155

Provided the right hand of Eq. (12) is smaller, Bob should use Promise to lock
multiple payments pm as it is his individually rational choice that maximizes his
pay-off uB .

5 Applications

In this section we apply Promise to the XCLAIM protocol. We show analytically
how Promise is able to reduce the initial amount of locked deposits. Further, we give
a sketch how Promise can be implemented in NOCUST.

5.1 XCLAIM

XCLAIM is a protocol that allows users to transfer assets between heterogeneous
decentralized ledgers using a collateralized service provider called a vault [21].
Instead of relying on a trusted third party like a centralized exchange, the vault
must provide collateral to ensure that it does not steal the coins it holds in custody.
It has to verify correctness of her actions by submitting transaction inclusion proofs
to the smart contracts that augments the protocol. Promise can be applied such that
the vault, Alice, locks some initial collateral DI and issues backed-tokens using this
collateral. Bob, using the service, is able to lock the future payments of Alice to
allow him to transfer more assets between the ledgers.

Initial Parameters XCLAIM uses an initial set of parameters as follows:

• Initial Collateral D: A service provider needs to provide 200% collateral D in
comparison to the value held in custody VA.

• Payments p: Although payments are not specified in the original XCLAIM paper,
similar services such as tBTC require users to pay 0.9375% of fees as payment.1

• Rate of return r : A service provider needs to lock collateral in the ETH currency
to participate. Possible alternatives offer a maximum of 3.75% APR rates.2

• Discount factor δ: Service providers can discount future payments. As the price
of cryptocurrencies is relatively volatile we adopt a strongly discounted future
income at 0.75 from [14].

Integrating Promise For sake of example, we are using BTC as the issuing currency
and ETH as the backing currency. This means that the vault, the service provider,
has to lock ETH as collateral to provide security against stealing BTC it holds in
custody. Given the parameters, Promise can be integrated as follows.

1Based on https://docs.keep.network/tbtc/index.pdf from 3 May 2020.
2Based on https://www.coingecko.com/en/earn/ethereum from 3 May 2020.

https://docs.keep.network/tbtc/index.pdf
https://www.coingecko.com/en/earn/ethereum
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1. The user and a vault agree on a subscription period m. For example, the user and
the vault can agree that the vaultwill be responsible for the next tenBitcoin-backed
tokens issued or redeemed by this users that are each 1 BTC in size.

2. The user and the vault set-up aPromise contract inwhich the user pre-paysm = 10
fees at 0.9375% of 1 BTC for the next ten requests at a set price of p = 0.009375
to issue or redeem Bitcoin-backed tokens.

3. The vault then deposits the initial deposit DI into the contract.
4. Each time the user issues or redeems tokens with the vault, the vault is allocated

a part of the payment p.
5. Finally, after ten requests have been made, the vault can withdraw pm and DI .

Cost Reduction For simplicity, we are going to denote all monetary amounts in BTC.
In XCLAIM, a vault would have to provide the equivalent of 2 BTC in collateral
to hold custody over 1 BTC in value. First, we calculate the possible DI collateral
given Eq. (9). This gives us the minimum collateral required to also protect against
a vault that plays a single-shot game. For simplicity, we are assuming that the vault
has an incentive of 1 to steal the BTC (the current value of the Bitcoin) as well as
a hidden motivation to steal BTC such that VA = D = 2. Moreover, the vault is not
interested in any future collaboration with the user, hence β(n) = 1. Last, we divide
the 3.75% APR through 365 days to get the average return.

ρ = p − E[r ]p + D − β(n)VA

ρ = 0.009375 − 0.0375

365
0.0093750 + 2 − 2

ρ = 0.00937404

(13)

Second, we are using Eq. (10) to explore the reduction factor ρ if the vault plays
a sequential game. Note that, at a minimum, a vault has at least a private value of
VA to not follow the specification of XCLAIM: if the vault can take the 1 BTC and
is punished with less collateral DI being taken away, it is incentive compatible for
the vault to take the 1 BTC. Using the example values above, we calculate ρ as:

ρ =
9∑

t=0

( δ

1 + r

)t
(p − (t + 1)E[r ]p − E[r ]D)

ρ =
9∑

t=0

( δ

1 + r

)t
(
0.009375 − (t + 1)

0.0375

365
0.009375 − 0.0375

365
∗ 2

) (14)

Discussion We plot the results from Eqs. (13) and (14) in Fig. 3. The collateral
reduction ρ can be subtracted from D. In practice, the user and the service provider
can agree on the desired reduction. We note three findings: (i) If the user and the
service providerwant tomaintain securityw.r.t. no additional incentive for the service
provider to violate the specification, the maximum reduction is given by the single-
shot game reduction from Eq. (13) (the orange line in the Figure). (ii) Note that the
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Fig. 3 The possible collateral reduction ρ under the assumption that the vault considers a single
round of execution (i.e., a single-shot game) as depicted in the orange line or that the vault considers
a sequential game with multiple rounds as depicted in the blue line. The colored areas show in
which collateral reduction ranges the vault does not receive an additional incentive to violate the
specification as agreed with the user. The more rounds m the game last, the higher the collateral
reduction ρ can be under the sequential game scheme. Collateral reductions are constant in case
the vault only plays a single-shot game

main reason that the single-shot reduction is comparably low since the user has a
“buffer” of 1 unit of BTC that was added to VA. If the user is willing to accept a
lower buffer, say 0.5, the collateral can be consequently lowered. This would still
cover the value of the 1 BTC in our example plus a 0.5 potential malicious intend on
the vaults side. (iii) The user and the service provider can agree to lower the initial
collateral DI in a sequential game setting if they agree on a longer period m. The
collateral reduction, however, is finite: as m → ∞, ρ stabilizes to a constant value.

5.2 NOCUST

NOCUST is a second-layer payment protocol whereby an untrusted intermediary
operates a commit-chain to facilitate payments between its users [15]. The application
of Promise to NOCUST follows a similar approach as the XCLAIM example. Hence,
we are only giving a sketch of Promise’s applicability here.

We consider a scenario where Alice is the intermediary commit-chain operator,
and Bob is a payment recipient. In this setting we propose to employ Promise as
follows: Any fee to be paid by Bob to Alice in exchange for the delivery of an
incoming paymentwould be locked as collateral that Bob could claim if theNOCUST
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Table 2 Overview of Promise functions and their cost

Function Description Gas cost Cost

Create Setup function 112196 USD 0.02895

Deposit Called by intermediary to provide
deposit

43291 USD 0.01116

Payment Called by user to provide
pre-payment

43770 USD 0.0113

Deliver Called as part of task provision 50703 USD 0.01309

Withdraw Called by intermediary after the
service period is up to receive
payment and deposit

31788 USD 0.0082

protocol fails. Over time, the fees locked in Promise would grant Bob instant finality
over larger payments, increasing the utility of the service.

For example, in a sales scenario, Bob could release some goods immediately after
Alice promises to deliver the payment for them, instead of waiting two rounds for
guaranteed finality. If Alice fails to deliver the payment, her collateral would paid to
Bob to cover the cost of the goods.

5.3 Implementation

We implement Promise in Solidity in around 100 lines of code. We use the imple-
mentation to experimentally assess the cost of executing the contract functions. Our
cost calculations are summarized in Table 2 based on an Ether exchange rate of USD
172.61 and 1.5 Gwei gas price. The implementation is available as an open source
project.3

6 Related Work

There are two strands of related literature. The first one comes from the financial
world covering (advance) payments for financial contracts. The second strand comes
from the more recent work in decentralized ledgers. In the economics literature,
a wide range of work focuses on secured debt, such as [17, 18]. However, these
concepts rely on trust on third parties to maintain security in the debt and payment
positions. Promise replaces this third-party trust by holding advance payments in a
smart contract escrow.

3https://github.com/nud3l/Promise/tree/master/src.

https://github.com/nud3l/Promise/tree/master/src
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On the second strand, Balance is a protocol that allows intermediaries to lower
their collateral over time [14]. It operates at the other end of Promise: instead of
lowering the initial collateral, the more an agent behaves honestly, the higher the
reduction of collateral. Balance requires the highest collateral to be provided at the
start of the interaction between agents and makes the assumption that payments are
close to 0 (i.e., there is perfect competition). Promise and Balance can be combined
together to first reduce initial collateral when bootstrapping a new protocol and then
lower collateral requirements for established agents over time. Teutsch et al. discuss
bootstrapping a token for verifiable computations [19]. This work discusses how to
enable users, like Bob, to obtain the required funds to participate in TrueBit. Their
proposal includes a governance game that allows to exchange special governance
tokens into collateral tokens (for intermediaries) and utility tokens (for users). Lastly,
the idea of bundling payments together is also introduced in [7] to create subscriptions
for services of agents. Promise extends this idea to allow collateral reduction for
intermediaries.

7 Conclusion

We present Promise, a subscription mechanism that allows users to lock payments
for future services for a period of time. The locked payments are added to the initial
collateral of a service provider, Alice, each time a service is delivered. The core
assumption for the security of Promise is that a user Bob is able to lock a number of
payments up front and exit the protocol when Alice misbehaves receiving back all
of his payments over the subscription period and the initial collateral provided by
Alice. On the other hand, Alice is able to utilize Bob’s future payments as collateral
throughout the subscription period. We have introduced a semi-formal model for
Promise. We discuss the security and the effect of the β parameter, but leave formal
proofs of the security properties as future work. We have shown how Promise can
be applied to the XCLAIM protocol and shown a sketch of applying it to NOCUST.
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Step on the Gas? A Better Approach for
Recommending the Ethereum Gas Price

Sam M. Werner, Paul J. Pritz, and Daniel Perez

Abstract In the Ethereum network, miners are incentivized to include transactions
in a block depending on the gas price specified by the sender. The sender of a transac-
tion therefore faces a trade-off between timely inclusion and cost of his transaction.
Existing recommendationmechanisms aggregate recent gas price data on a per-block
basis to suggest a gas price. We perform an empirical analysis of historic block data
to motivate the use of a predictive model for gas price recommendation. Subse-
quently, we propose a novel mechanism that combines a deep-learning based price
forecasting model as well as an algorithm parameterized by a user-specific urgency
value to recommend gas prices. In a comprehensive evaluation on real-world data,
we show that our approach results on average in costs savings of more than 50%
while only incurring an inclusion delay of 1.3 blocks, when compared to the gas
price recommendation mechanism of the most widely used Ethereum client.
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1 Introduction

Since the introduction of Ethereum [4] and it’s virtual machine, participants have
been able to create so-called smart contracts, i.e. programs that encapsulate the logic
for governing funds. As these contracts have to be executed by all participating nodes
in the Ethereum network, the sender of a transaction has to pay for the computational
cost of execution in units of gas. The amount of gas to be paid by the sender of a
transaction depends on the complexity of executing a smart contract’s logic. Addi-
tionally, the sender is required to specify the gas price, which he will have to pay per
unit of consumed gas. The product of the gas cost and price determines the trans-
action fee, which is received by the miner who includes the transaction in a block.
Hence, setting an appropriate gas price is critical for having a transaction included
in a timely manner. While Ethereum employs a hard coded and transparent gas cost
model, there does not exist any embedded mechanism for computing how much a
sender of a transaction should pay per unit of gas. The gas price is instead determined
by the supply and demand for computational resources. Therefore, choosing an opti-
mal gas price can be challenging, as underpaying likely results in a transaction not
being included by miners, whereas overpaying leads to avoidable costs.

The most widely used gas price prediction mechanism is implemented by the
popular Ethereum client Geth [13]. This and comparablemechanisms only use recent
gas prices and merely aggregate past data to heuristically recommend the gas price
for a transaction.

In this paper, we present a novel approach for gas price prediction, motivated by
the empirical analysis of a period of 522,213 blocks. We find significant seasonality
in the gas price data, suggesting that this can be predicted using a machine learning
model. We propose the use of Gated Recurrent Units [7] as these have been shown
to be suitable for capturing such patterns. Consequently, we design an algorithm for
choosing the gas price for a transaction, which leverages the predictions of our model
while allowing to specify the transaction’s urgency.Our evaluation on real-world data
shows that the proposed approach significantly outperforms the most widely-used
Ethereum client Geth [10].
Contributions. Our contributions are as follows:

1. We present a comprehensive empirical analysis of the Ethereum gas price over a
period of three months and identify seasonal patterns in the data,

2. We propose a deep-learning based model to predict the gas price and combine
this with a novel algorithm for recommending the gas price for a transaction,

3. We evaluate our model on real-world data and show that it outperforms the most
widely used gas price recommendation approach, resulting on average in costs
savings of more than 50% while only incurring an inclusion delay of 1.3 blocks
compared to Geth.

Structure. The remainder of this paper is organized as follows. Section 2 introduces
the background of Ethereum and its embedded gasmechanism.An empirical analysis
of Ethereum gas prices is presented in Sect. 3. We propose a methodology for better
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gas price recommendation in Sect. 4, before evaluating our model’s results in Sect. 5.
Related work is discussed in Sect. 6. Lastly, we conclude in Sect. 7.

2 Background

In this section, we first provide a brief overview of the workings of the Ethereum
network. Subsequently, we examine in greater detail the gas cost and pricing mech-
anisms used in Ethereum.

2.1 Ethereum

Ethereum employs a Proof-of-Work consensus mechanism as first introduced by
Bitcoin [20]. In such a protocol, transactions are grouped into blocks and Ethereum’s
block arrival time is approximately 13s [11]. Ethereum allows for the creation of
so-called smart contracts. These are programs which define a set of rules using a
Turing-complete programming language, typically Solidity [8], that can be invoked
by network participants. An Ethereum account balance is expressed in the underlying
currency Ether (ETH) and directly altered via state transitions caused by transactions.
The consensus rules governing transaction validity are implemented by theEthereum
Virtual Machine (EVM), a low-level stack machine which executes the compiled
EVM bytecode of the smart contract. Operations performed by the EVM consume
gas, a virtual unit of account used to measure the computational cost of executing a
transaction. By design, each EVM instruction has a hard-coded1 gas cost [26]. The
total execution cost has to be paid for by the sender of a transaction.

2.2 Gas Mechanism

The total execution cost for a contract consists of two components, namely the gas
cost in units and gas price per unit. The gas cost is split into a fixed base cost of 21000
gas and an execution cost dependent on the instructions executed while running the
contract.
GasLimit.Due to theTuring-completeness of theEVM, the exact computational cost
of a transaction cannot be predetermined. Hence, the sender is required to specify a
gas limit, or themaximumamount of gas thatmaybe consumed.As the computational
steps of a transaction are executed, the required gas is subtracted from the paid gas.
Once a transaction is completed, any unused gas will be refunded to the sender.

1Note that via a hard-fork, the Ethereum Improvement Proposal 150 [3] re-aligned gas costs for
instructions involving I/O-heavy operations.
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Should a transaction try to consume gas in excess of the gas limit, an Out-of-Gas
exception is thrown by the EVM. Even though such a transaction would fail, it would
be recorded on-chain and any used gas will not be refunded to the sender. Note that
in addition to the per transaction gas limit there is also a block gas limit,2 which
specifies the total amount of gas that may be consumed by all transactions in a block.
Gas Price. Apart from setting a gas limit, a sender will also have to specify the gas
price, which refers to the amount of Ether the sender is willing to pay per unit of
gas, generally expressed in wei (1 wei = 10−18ETH) or Gwei (1 Gwei = 10−9ETH).
Miners set a cut-off gas price to choose which transactions to include in their memory
pool.When constructing a new block, they then choose the transactions with themost
lucrative gas prices from their memory pool. A higher gas price will increase the fee
which miners receive from a transaction, thereby motivating a miner to include a
transaction in a block. The total amount of wei to be paid by a sender is referred to
as the transaction fee and amounts to the product of the gas price and gas cost.
Gas Price Oracles. The sender of an Ethereum transaction is exposed to the non-
trivial task of having to decide on a gas price. Since a higher gas price will increase
the likelihood of having a transaction included quickly, there is a clear trade-off
between waiting and paying. We define the optimal gas price as the minimum gas
price such that the transaction is included in a block within the period of time that
the sender of the transaction is prepared to wait for.

In order to avoid risks of overpaying, gas price oracles exist [1, 12–14]. These
oracles aim to recommend the gas price a transaction requires in order to be included
in a block within a specified time period. Commonly, the recommendation mecha-
nism uses some rule-based approach analyzing the gas prices of previous blocks. We
provide a more detailed summary on existing approaches in Sect. 6.

3 Empirical Analysis

In this section, we empirically analyze Ethereum block data to develop a better
understanding of the gas price behavior. We use data from the period of 1 October,
2019 to 31 December, 2019, which amounts to a total of 522,213 blocks. When
comparing mean, minimum and maximum gas prices averaged over 3h intervals
during this period, we can see in Fig. 1 that substantial spreads exists in the gas price.
More specifically, themaximumgas price exceeds theminimumgas price by an order
of magnitude for the entire period. The gas price volatility throughout the examined
522,213 blocks is further indicated by the standard deviation of the average gas price,
which is 46.4645 Gwei at an average gas price of 13.9598 Gwei, as shown in Table 1.
The same can be said about the average gas utilization per block. Figure 2 shows
the cross-correlations between the average gas price, maximum gas price, minimum
gas price, number of transactions and gas utilization per block. Surprisingly, the
average gas price and utilization are not correlated. In fact, the average gas price

2At the time of writing the average block gas limit was around 10,000,000 units of gas.
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Fig. 1 The mean, maximum and minimum gas price averaged over 3h intervals from block
8,653,173 (1 October, 2019) to 9,193,265 (31 December, 2019)

Table 1 Mean, median and standard deviation of average gas price per block, as well as mean and
standard deviation of gas utilization per block from block 8,653,173 (1 October, 2019) to 9,193,265
(31 December, 2019)

Number of blocks: 522,213

Mean gas price: 13.9598 Gwei

Median of average gas price: 10.3260 Gwei

Standard deviation of average gas price: 46.4645 Gwei

Mean gas utilization: 79.36%

Standard deviation gas utilization: 32.00%

is only significantly correlated with the maximum gas price. The gas utilization is
only correlated with the transaction count. However, apart from these two correlated
pairs, the remainder of the variables are not significantly correlated.

To investigate the presence of seasonality in the data, we examine the autocorre-
lation of each variable on a per block and hourly basis. Most interestingly, we find
that even though the gas price does not exhibit any significant seasonality on a per
block basis, there does exist seasonality when looking at the gas price averaged over
one hour intervals, as indicated by the autocorrelation in the left plot of Fig. 3.

It can be seen that especially for a lag of 24h significant seasonality can be found
in the data, which could be linked to different time zones of the countries where most
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Fig. 2 Correlation matrix for the average gas price, maximum gas price, minimum gas price,
number of transactions and gas utilization per block

Fig. 3 Autocorrelation function (ACF) plot of mean (left hand side) and minimum (right hand
side) gas prices averaged over one hour periods for 144 lags

transactions are conducted. This seasonality can be found to an even greater extent in
the autocorrelation of the minimum gas price averaged over one hour intervals. The
presence of seasonal patterns in the data alludes to the viability of machine learning
models for predicting future gas prices.
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4 Methodology

The gas price recommendation methodology we propose consists of two key com-
ponents. First, we present a deep-learning based model to predict the gas price for a
pre-defined period of time. Second, we introduce an algorithm that uses these pre-
dictions to recommend a gas price for a transaction, parameterized by the sender’s
willingness to delay the transaction. Both components, as well as the employed data
pre-processing steps are presented in this section.

4.1 Gas Price Prediction

The methodology we propose requires a forecasting model to predict the gas price
trajectory over a pre-defined number of time steps s. In particular, we are interested
in predicting the minimum gas price under rational miner behavior, since this can
be seen as a lower bound for setting the gas price for a given transaction. From
the preliminary data exploration in Sect. 3, it is apparent that the per-block data
is extremely noisy, which can be attenuated by averaging over a longer period of
time. We therefore average the minimum gas price of all blocks in consecutive 5min
intervals and forecast on this level of granularity, instead of using per-block data
directly. A time step is then defined as a 5min interval. We denote the complete time
series of average minimum gas prices by y. Furthermore, we define the aggregated
time series of all features used as model input asD, where dt ∈ D denotes the feature
vector for a single time step t . For both model training and inference, we use a sliding
window model that uses a fixed-size window of historical data with l time steps for
prediction. The problem of forecasting a window of s time steps using a window of
size l can then be defined as

ŷt+1, . . . , ŷt+s = argmax
yt+1,...,yt+s

p(yt+1, . . . , yt+s |dt−l , . . . , dt ) . (1)

In the remainder of this section we present our pre-processing methodology and
proposed forecasting model.

4.1.1 Pre-processing

We introduce a number of pre-processing steps to the data, which specifically aim
to reduce the impact of noise while still capturing seasonal components and trends.
Table 2 lists the features used as input for the predictive model. Due to the daily
seasonality in the data, some variables are also included with a lag of 24h. To reduce
the impact of noise in the data, we first remove outliers using a heuristic criterion,
where we delete all data points that are more than 1.5 standard deviations higher
or lower than the mean. Subsequently, all data is normalized to values between 0
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Table 2 Features used as input data for the predictive model to forecast the minimum gas price.
Lagged variables are included both with and without lag

Feature name Lagged by 24h

Average gas price per block Yes

Transaction count per block No

Max. gas price per block No

Min. gas price per block No

ETH price at block timestamp No

and 1. Since the main goal of the predictive model is to capture the seasonality and
predict the gas price on a fairly coarse level, we employ a further pre-processing
step presented in [23]. This additional step applies a discrete Fourier transform to
each window in the input data and truncates the frequency domain representation
of the time series using an adaptive energy-based criterion. We then convert it back
to the time-domain using an inverse Fourier transform. This methodology allows us
to adaptively reduce the impact of short-term fluctuations in each window of input
data, while still capturing the seasonal components and overall trend.

4.1.2 Model

As a forecasting model, we propose the use of a Gated Recurrent Unit (GRU) [7].
GRUs are a specialisation of recurrent neural networks, where a computationally
efficient gating mechanism is used. Gating has been shown to improve the network’s
ability to learn longer term dependencies [17], making this kind of model well-suited
to the problem at hand. The GRU architecture is given by

zt = σ(Wzdt + Vzht−1 + bz) , (2)

rt = σ(Wrdt + Vrht−1 + br ) , (3)

ht = zt ◦ ht−1 + (1 − zt ) ◦ φ(Whdt + Vh(rt ◦ ht−1) + bh) , (4)

ŷ = ŷt+1, . . . , ŷt+s = f (ht ) , (5)

where ◦ denotes the Hadamard product, W , V and b are parameter matrices and
biases, σ(·) and φ(·) denote the sigmoid and hyperbolic tangent functions, respec-
tively, zt , rt and ht are the update and reset gates and the hidden state and f (·) denotes
the final linear layer of the network. The network is trained using gradient descent
and backpropagation with an Adam optimiser [18].
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4.2 Recommendation Algorithm

We now describe our recommendation algorithm which leverages the gas prices
predicted by our model. We use the 20th percentile of the predicted prices as the
initial gas price, which we note ĝ. One of the main objectives of our algorithm is
to scale ĝ such that the faster the predicted gas prices are decreasing, the lower
the gas price recommended by the algorithm. On the other hand, if the prices are
increasing, the predicted prices should not be significantly lower than the current
gas price. We incorporate this objective by finding a coefficient 0 < c ≤ 1 that is
multiplied with the predicted gas price ĝ. Furthermore, we want c to increase or
decrease exponentially with respect to the trend to achieve aggressive gas pricing if
the predicted prices decrease quickly.

First, we compute the trend of the predictions ŷ returned by our forecastingmodel.
We fit a linear function such that ŷ = aX + b, with X = 1, 2, . . . , s, and store the
slope a, which captures the trend in the predicted gas prices. We then normalize a
to ã to lie in the range between 0 to 1. This is achieved by computing the maximum
Amax and minimum Amin values of the slopes we obtain for our training data and
computing ã according to Eq. (6).

ã = a − Amin

Amax − Amin
(6)

Then, to obtain the described exponential behavior, we exploit the fact that the
exponential function in the interval [−2, 0] has the desired properties and hence,
compute c using Eq. (7).

c = e2ã−2 (7)

Finally, to allow the user to configure the urgency of a transaction, we define an
urgency parameter U , which we use to scale the obtained coefficient c to arrive at a
recommended gas price G given by

G = ĝ · c · U . (8)
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Algorithm 1 Evaluation procedure of the gas recommendation efficiency
function EvaluateRecommender(StartBlock, EndBlock, Recommend)

Pending ← ∅

Results ← ∅

Block ← StartBlock
while Block ≤ EndBlock ∨ (Pending �= ∅ ∧ Block ≤ LastBlock) do

Price ← GetMinimumPrice(Block)
while Pending �= ∅ ∧ min

t∈Pending(t1) ≥ Price do 
 t1 is the transaction price

Transaction ← argmin
t∈Pending

(t1)

Pending ← Pending \ {Transaction}
Results ← Results ∪ {(Transaction,Block,Price)}

end while
if Block ≤ EndBlock then

Recommended ← Recommend(Block)
Pending ← Pending ∪ {(Block, Recommended)}

end if
Block ← Block + 1

end while
return Results

end function

4.3 Measuring Gas Recommendation Efficiency

Up to here, we have described how we recommend a price at a given block number.
However, to understand how optimal a gas price is, we need tomeasure the difference
between the recommended and the optimal gas price.

To evaluate the efficiency of our approach, we iterate over a range of blocks, where
we do the following. For each block, a new transaction using the recommended gas
price is added to a set of pending transactions. Each transaction in the pending set
is processed upon encountering a block with a minimum gas price lower than that
specified in the transaction. We keep track of the recommended price, the inclusion
price, i.e. the minimum gas price of the block where the transaction is included,
and the number of blocks elapsed until inclusion. We show the detailed steps in
Algorithm 1. The EvaluateRecommender function takes a start block, an end
block and a recommendation function to evaluate. LastBlock is the number of the
last block which we evaluate and GetMinimumPrice returns the minimum gas
price for a given block.

To be able to evaluate the efficiency of our algorithm, we use the Geth gas price
recommendation algorithm as the main baseline, as it is by far the most widely used
Ethereum client [10].
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5 Results

In this section, we present the results we obtain when using the methodology pre-
sented in the previous section and compare them with our baselines.

5.1 Model Training

All models are implemented in Python, using the PyToch library [24]. We train all
models on a personal computer with 32GB of RAM, an 8th generation Intel Core
i7-8700 with 3.20GHz and 6 cores and a 256GB SATA hard drive. Model training
and hyper parameter tuning is performed on the data between 10 November, 2019
to 20 November, 2019, where we use the first 70% of the data for training and the
remaining 30% for validation.We show exemplary predictions of ourmodel in Fig. 4.

Fig. 4 Exemplary gas price predictions obtained with our forecasting model for the period between
the 23 November, 2019 and 25 November, 2019
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Table 3 Parameters used in the different strategies

Model Parameter Description

Geth Scaling (S) Ratio by which to scale the
price (0.8 means use 80% of
the recommended price)

Proposed approach Urgency (U) Urgency tuning parameter to
trade-off price for time

Look-ahead Blocks (B) Number of blocks to look
ahead

5.2 Evaluation

We use a sample of around five days of data—from 20 November, 2019 (block
8,965,759) to November 24, 2019 (block 8,995,344)—and evaluate the different
price recommendation strategies using the procedure presented in Algorithm 1. We
first describe the parameters of each strategy in Table 3. For Geth we use a scaling
ratio parameter S with which the recommended gas price is multiplied. The main
purpose of this parameter is to ensure that giving a lower gas price does have a direct
impact on the number of blocks waited. Our proposed recommendation strategy
accepts a single parameter U representing the urgency. The urgency parameter is
used to trade off gas price for waiting time: the lower the urgency, the lower the gas
price and hence, the longer the waiting time. Empirically, reasonable values for these
parameters are roughly between 0.7 and 1.3, where 0.7will result in cheap but long to
be accepted transactions and 1.3 will result in more expensive but faster transactions.
Finally, our look-ahead model, which we use to estimate the lowest possible price
takes a parameterB representing themaximum look-ahead as a number of blocks.We
note that the look-ahead strategy is for validation purposes only as it uses information
about future blocks, which would obviously not be available in practice.

We present a summary of the results for the different recommendation strategies
in Table 4. We use several values for the parameters of each strategy and order its
results so that the gas price decreases and the number of blocks to wait increases. We
can see that using the price recommended byGeth, the waiting time is very short—on
average less than 2 blocks—with an average gas price of around 4.4 Gwei. However,
by just using 90% of the recommended price, the waiting time increases to an average
of 15.5 blocks. Comparing these results to the minimum possible gas price, obtained
from the look-ahead model, we can see that by only waiting for an average of 4.8
blocks a saving of 75% could be obtained. Although these numbers are hypothetical,
they suggest the potential for significant improvement.

We now show how our model performs in comparison to the price recommended
by Geth and the hypothetical minimum price. With the urgency parameter set to 1.0,
our model recommends a gas price on average twice as low as the Geth price, while
waiting for an average of approximately 3.3 blocks. When decreasing the urgency
parameter, we can see that the number of blocks elapsed increases fairly slowly at
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Table 4 Results of the different recommendation strategies presented. Gas price and wait time are
averaged over the number of blocks processed. Parameters are described in Table 3

Strategy Parameter Gas price Blocks waited

Geth S = 1.0 4,414,902,746 1.97

Geth S = 0.9 4,080,968,868 15.49

Geth S = 0.8 3,531,922,197 25.52

Look-ahead B = 15 1,166,965,099 4.80

Look-ahead B = 30 969,559,938 8.52

Look-ahead B = 60 782,105,012 18.84

Proposed approach U = 1.0 2,120,108,703 3.28

Proposed approach U = 0.9 1,908,097,833 3.79

Proposed approach U = 0.8 1,696,086,963 5.13

Proposed approach U = 0.7 1,484,076,092 10.06

Fig. 5 Effect of the urgency parameter on the average gas price paid and number of blocks waited

first but doubles between 0.8 and 0.7, showing that at this point the gas price becomes
too low for the transaction to be included in a timely manner. In Fig. 5, we show
the effect of our urgency parameter on the average gas price paid and the average
number of blocks elapsed until the transaction is included.

6 Related Work

For Ethereum in particular, there has been extensive research on smart contract cor-
rectness, upper-bound gas consumption and imperfections in the current EVM gas
cost model. Nonetheless, very little work has been done with the goal of determining
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optimal gas prices. In this section, we first present existing work on the gas mecha-
nism, before examining the most widely used gas price recommendation methods.

6.1 Gas Mechanism

The overconsumption of gas can be harmful for the contract user for two main rea-
sons: higher monetary costs and potential vulnerabilities. Gas overconsumption is
examined by Chen et al. [5], who focus on gas usage optimization by introducing
Gasper, a tool leveraging symbolic execution for detecting costly patterns in the byte-
code of smart contracts which are not optimized by the Solidity compiler. Potential
issues in the form of gas-related vulnerabilities are carefully examined by Grech et
al. [15], who propose a static analysis tool, called MadMax, predominantly suitable
for detecting out-of-gas exceptions which may cause contract funds being locked.
Elvira et al. [2] present Gastap, a static analysis tool for inferring gas upper bounds
for smart contracts and are thereby able to detect whether any out-of-gas vulnerabil-
ities could exist. A further approach for computing gas consumption upper bounds
was introduced by Marescotti et al. [19], however, the authors are yet to implement
and test their algorithms in an EVM setting. For a more general summary of existing
smart contract verification tools we point the reader to [16].

There have been several pieces of work focusing on imperfections in the current
gas cost mechanism. Both Yang et al. [27] and Perez and Livshits [21] identify
inconsistencies in the pricing of EVM instructions in the current gas cost model.
The latter propose a new type of attack aimed at exploiting EVM design flaws by
generating resource exhaustive contracts, which are on average significantly slower
in terms of throughput than typical contracts. As a means of preventing Denial-of-
Service attacks stemming from under-priced EVM instructions a modification of the
current gas cost mechanism has been proposed by [6].

While several pieces of existing work examine the current gas cost mechanism,
limited work exists on gas price recommendation. Pierro et al. [22] investigate poten-
tial factors that influence transaction fees in Ethereum from a technical and economic
perspective, yet leave a gas price prediction model for future research.

6.2 Gas Price Oracles

In the following, we examine existing approaches for gas price recommendation that
are used in practice.

Geth. The Ethereum client implementation in go, namely Geth [13], accounts for
over 79% of all Ethereum clients [10]. To recommend a gas price, Geth uses the
minimum gas price of the previous blocks. It looks back at the 100 blocks preceding
the current one and then uses the value of the 60th percentile of the minimum gas
prices as the price recommendation.



Step on the Gas? A Better Approach for Recommending the Ethereum Gas Price 175

EthGasStation.A further gas price oracle has been introduced by EthGasStation [1],
a third-party tool, which estimates the expected number of blocks required to con-
firm a transaction at a given gas price using a Poisson regression model based on
data of the previous 10,000 blocks. This approach has also been implemented by the
popular Ethereum block explorer Etherchain [9]. Unfortunately, no historical data
was available for comparison.

GasStation—Express. EthGasStation also released a more simple gas price ora-
cle called “GasStation – Express” [12]. This approach predicts the likelihood of a
transaction being included in the next block at a given gas price by examining the
percentage of the last 200 blocks that included a transaction with the same or lower
gas price [25]. The percentage thresholds of recent block inclusions are fixed for the
categories Fast (90%), Standard (60%) and SafeLow (35%). Additionally a Fastest
option is given, whereby the suggested gas price was included by all of the previous
200 mined blocks, which likely results in the sender overpaying considerably. Just
like the threshold percentages, the associated expected confirmation times are also
hard-coded, which limits the speed at which the system can react to changes.

7 Conclusion

Motivated by an empirical analysis of 3 months of data, we have proposed a novel
approach for recommending the Ethereum gas price that outperforms the method
of the most widely used Ethereum client. Our approach uses a deep-learning based
price forecasting model as well as an algorithm parameterized by an urgency value
that can be set by the user. In a comprehensive evaluation, we show that our approach
is able to reduce the average gas price paid by the sender of a transaction by more
than 50% while only introducing an average additional waiting time of 1.3 blocks
compared to Geth.

Our evaluation of the proposed approach aimed to focus on common-sized trans-
actions. For more computationally intensive transactions, the gas price would likely
need to be increased to ensure timely inclusion in a block. However, this could be
easily accomplished by adjusting the urgency parameter.

Future work can examine the usefulness of additional data, such as memory pool
data, as model inputs. Additionally, the evaluation and comparison of our approach
and previous approaches in a larger simulation may be a fruitful avenue for further
research.
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